# Optimization of the Compensation Capacitors for Megahertz Wireless Power Transfer Systems

Zefan Tang, Minfan Fu, Ming Liu, Chengbin Ma\*

University of Michigan - Shanghai Jiao Tong University Joint Institute Shanghai, China zftang@sjtu.edu.cn, fuminfan@sjtu.edu.cn, mikeliu@sjtu.edu.cn, chbma@sjtu.edu.cn

Abstract—A wireless power transfer system can increase its system frequency to several Megahertz for large spatial freedom. A MHz system usually uses the same compensation as those kHz systems. Traditionally, the rectifier is modeled as a pure resistive load for the coupling coils when designing the compensation capacitors. However, the rectifier input reactance cannot be ignored for MHz systems. This reactance can affect the system resonance and is usually not considered when designing the compensation capacitors. This paper analyzes the rectifier input impedance and discusses its undesirable effects. A non-zero phase is shown to exist seeing into the coupling coils for MHz WPT system. In order to limit the phase, the optimal compensation capacitors are discussed and found. Finally, a 6.78 MHz system is used to verify the proposed optimal compensation method. It shows the phase variation can be limited from the original range  $[15^{\circ}-35^{\circ}]$  to the optimal range  $[-5^{\circ}-5^{\circ}]$ .

*Index Terms*—Wireless power transfer, compensation, high-frequency rectifier, input reactance, phase

## I. INTRODUCTION

Recently, resonance inductive coupling becomes a promising wireless power transfer (WPT) technology. Its unique advantages make WPT-based charging methods challenge the traditional wire-connected charging methods in different areas, such as wearable devices, mobile phones, household appliances, and even high-power electric vehicles [1]–[5]. For the aforementioned applications, different WPT solutions should be designed according to the specific requirements, such as power level, transfer distance, radiation limit and system reliability. For those small or medium power (< 40 Watt) devices, it is preferred to increase the resonance frequency to several Megahertz for large spacial freedom [6], [7].

Similar to kHz WPT systems, a MHz system consists of all the necessary power conversion blocks, including a power amplifier for dc/ac conversion, the coupling coils for ac/ac conversion, and a rectifier for ac/dc conversion [8]– [10]. In such a system, each function block can be analyzed individually or optimized in a whole system. For example, [11] demonstrates high-efficiency or tunable power amplifiers; [12]–[15] give the fundamental circuit analysis for the coupling coils; [9] focuses on the whole system efficiency analysis, and [8], [10] carry out a system-level optimal load tracking. Among these contributions, the most fundamental work for WPT systems is to design the compensation methods for the coupling coils. A properly designed compensation method can significantly enhance the power transfer capability among the coupling coils and provide a resistive load for the ac source. Many published works have well solved this issue. Among these works, four basic compensation solutions have been widely used and accepted, including series-series (SS), series-parallel (SP), parallel-series (PS), and parallelparallel (PP) [16]. Also some high order compensations can be found in some systems [14], [15], [17]–[20]. However, the load of the coupling coils, i.e., the rectifier input impedance, are modeled as a pure resistor for most papers above. This simple assumption is no longer valid for a rectifier working at several MHz. Such a rectifier is shown to have non-zero input reactance [8], [10]. This input reactance would make the system deviate from the original design and even affect the transfer characteristics of the coils. Therefore, it is necessary to analyze the influence of the rectifier input reactance and give corresponding compensation solutions.

Theoretically, the problems caused by the rectifier input reactance can be solved by the auto-tuning mechanism, such as the tuning of impedance matching circuits or coupling coils's positions [21]. However, it requires reliable detection circuits and smart control mechanisms. Besides, the use of more circuit components will increase the system cost and complexity. In a system, it is more attractive to use fixed capacitors for compensation. Such a system is proposed to work in an environment with various uncertainties, including the coils distance and final load variation. Generally, the SS compensation is the most attractive solution because its compensation capacitors are independent of the final load and the coupling condition [8], [16]. However, as mentioned above, this independence is no longer valid due to the rectifier input reactance. Therefore, this paper aims at finding optimal SS compensation capacitors to accommodate the high-frequency system, especially considering the actual rectifier influence.

This paper will first review the traditional compensation method. Then a simulation-based analysis is carried out to show the characteristics of the rectifier input reactance and its associated influence for the coupling coils. In order to minimize the rectifier input reactance effects, the rectifier is modeled as a non-pure-resistive load for the coupling coils. In such a circuit model, different combinations of SS compactors are evaluated in simulation to show their influence. Then optimal compensation capacitors are found through a global search and shown to be valid in simulation. In the final experiment, it shows that the use of optimal compensation capacitors can greatly minimize the effects caused by the rectifier input reactance for a 6.78 MHz system.

## II. SYSTEM ANALYSIS

## A. Traditional Compensation

Fig. 1 shows the circuit model for series-series (SS) compensated WPT system.  $L_1$ ,  $L_2$ ,  $R_1$ ,  $R_2$  are the self-inductances and self-resistances of the coils.  $M_{12}$  is the mutual inductance between the transmitting coil and receiving coil. The traditional SS compensation method is to use  $C_1$  and  $C_2$  to form resonance circuit by

$$j\omega L_i + \frac{1}{j\omega C_i} = 0, \ i = 1 \ or \ 2,$$
 (1)

where  $\omega$  is the resonance frequency.



Fig. 1. The circuit model for series-series compensation coils.

### B. Rectifier Input Reactance

With the traditional compensation, the input impedance of coupling  $coils(Z_{IN})$  can be expressed by

$$Z_{IN} = \frac{\omega^2 M_{12}^2}{R_2 + Z_{REC}} + R_1,$$
(2)

where  $Z_{REC}$  is the direct load of the receiving coil. Usually, a rectifier is connected to the receiving coils and its input impedance is just  $Z_{REC}$ . The resonance condition (1) is derived based on the assumption that  $Z_{REC}$  is pure resistive. And a pure resistive  $Z_{REC}$  can ensure a pure resistive  $Z_{IN}$ [refer to (2)]. However, this assumption for resistive  $Z_{REC}$  is no longer valid for high-frequency system. Fig. 2 gives the circuit model for a full-bridge rectifier. At high frequency, the device parasitic parameters become obvious and make the diode no longer an ideal switch. These undesirable parameters will introduce ineligible imaginary part for  $Z_{REC}$ , i.e., input reactance. Therefore, the rectifier input impedance should be modeled as

$$Z_{REC} = R_{REC} + j X_{REC},\tag{3}$$

where  $R_{REC}$  is the input resistance and  $X_{REC}$  is the input reactance.



Fig. 2. Full-bridge rectifier topology and high-frequency diode circuit model.

In order to accurately capture  $Z_{REC}$ , a circuit-modelbased simulation is carried out in a widely-used RF software

Advanced Design System (ADS), provided by Keysight Technologies Inc.. The rectifier is first analyzed individually with the diode spice model (DFLS406L from Diodes Inc. and used in the final experimental system). During the simulation, the rectifier input voltage  $V_{REC}$  is fixed at 20 V and the load resistance  $R_L$  is varied from 10  $\Omega$  to 100  $\Omega$ . Fig. 3 gives the rectifier input resistance and reactance for different frequencies. At low frequency (power electronics band),  $R_{REC}$ is almost linearly proportional to  $R_L$ , and  $X_{REC}$  is negligible compared to  $R_{REC}$ . At high frequency (RF band), the trend of  $R_{REC}$  experiences small variation, but  $X_{REC}$  becomes obvious and compatible to the  $R_{REC}$ . These results can be well explained by the diode model given in Fig. 2. At high frequency, those shunt capacitors  $(C_j, C_b \text{ and } C_p \text{ in Fig. 2})$ will become significant and introduce capacitance for  $Z_{REC}$ , i.e., the negative  $X_{REC}$  in Fig. 3.



Fig. 3. Rectifier input resistance  $R_{REC}$  and input reactance  $X_{REC}$  for different frequencies.

# C. The Influence of $Z_{REC}$

The input impedance of coupling coils  $Z_{IN}$  can be expressed by substituting (3) into (2) as follows,

$$Z_{IN} = \frac{\omega^2 M_{12}^2}{R_2 + R_{REC} + j X_{REC}} + R_1.$$
 (4)

The resistance and reactance of  $Z_{IN}$  can be derived as

$$R_{IN} = \frac{\omega^2 M_{12}^2 (R_2 + R_{REC})}{(R_2 + R_{REC})^2 + X_{REC}^2} + R_1,$$
(5)

and

$$X_{IN} = \frac{-\omega^2 M_{12}^2 X_{REC}}{(R_2 + R_{REC})^2 + X_{REC}^2}.$$
 (6)

The phase of  $Z_{IN}$  is defined as

$$\theta = tan^{-1} \left(\frac{X_{IN}}{R_{IN}}\right). \tag{7}$$

Due to the complicated characteristics of the diodes, it is impractical to describe the rectifier input impedance( $R_{REC}$ and  $X_{REC}$ ) in accurately mathematical expressions of  $R_L$ . In order to evaluate the influence of  $Z_{REC}$ , a simulation of the system including both the coupling coils and the rectifier in ADS is better to be carried out. The coils' parameters are given in Table I for a 6.78 MHz system. And the compensation capacitors are chosen according to (1). In such a system, a 6.78 MHz constant current source is used to drive the transmitting coil. The current RMS value is set at 0.5 A. Fig. 4 gives  $Z_{IN}$  for different  $R_L$ . According to (2),  $R_{IN}$ is reversely proportional to  $R_L$  as shown in Fig. 4. The negative  $X_{REC}$  will cause an inductive component for  $Z_{IN}$ , i.e., the positive  $X_{IN}$ . In this WPT system, the phase of  $Z_{IN}$  is also given in Fig. 4, and it increases with  $R_L$ . In applications, such a large phase variation is undesirable for the power amplifier. Therefore, it is meaningful to modify the traditional compensation method to accommodate the highfrequency system.

TABLE I COILS PARAMETERS



Fig. 4. The input impedance  $Z_{IN}$  and its phase for different  $R_L$  at 6.78 MHz.



A. The Influence of Compensation Capacitors



Fig. 5. System configuration

Usually, impedance matching networks are used to eliminate the undesirable  $\theta$ . However, these additional circuits will

inevitably introduce component loss. This paper is proposed to optimize the SS compensation capacitors for a high-frequency WPT system. The circuit model is shown in Fig. 5. The value of compensation capacitors should be properly designed instead of calculated through (1). For convenience, the coil inductance and compensation capacitance can be combined and represented by their net reactance at the transmitting side and receiving side respectively  $[jX_{TX} \text{ and } jX_{RX} \text{ in Fig. 5}]$ . Thus, it has

$$\begin{cases} X_{TX} = \omega L_1 - \frac{1}{\omega C_1} \\ X_{RX} = \omega L_2 - \frac{1}{\omega C_2}. \end{cases}$$
(8)

Then (1) is equivalent to

$$\begin{cases} X_{TX} = 0\\ X_{RX} = 0. \end{cases}$$
(9)

Considering the rectifier input reactance, the input impedance of coupling coils is expressed as

$$Z_{IN} = \frac{\omega^2 M_{12}^2}{R_2 + R_{REC} + j X_{RX} + j X_{REC}} + R_1 + j X_{TX}.$$
 (10)

The resistance and reactance of  $Z_{IN}$  can be represented as follows,

$$R_{IN} = \frac{\omega^2 M_{12}^2 (R_2 + R_{REC})}{(R_2 + R_{REC})^2 + (X_{RX} + X_{REC})^2} + R_1, \quad (11)$$

and

$$X_{IN} = \frac{\omega^2 M_{12}^2 (-X_{RX} - X_{REC})}{(R_2 + R_{REC})^2 + (X_{RX} + X_{REC})^2} + X_{TX}.$$
 (12)

Here, the study of compensation capacitors' effects are achieved by evaluating the effects of different  $X_{TX}$  and  $X_{RX}$ [refer to (8)], since the coils inductors are fixed. According to (11) and (12),  $X_{RX}$  affects both  $R_{IN}$  and  $X_{IN}$  and  $X_{TX}$ only affects  $X_{IN}$ . In order to reduce  $X_{IN}$ , the optimal  $X_{TX}$  is supposed to be negative due to the original positive  $X_{IN}$  [refer to (12) and Fig. 4]. Similarly, the optimal  $X_{RX}$  is supposed to be positive due to the existence of negative  $X_{REC}$  [refer to Fig. 3].

In simulation, the influence of different  $X_{TX}$  and  $X_{RX}$ are evaluated individually and compared with the traditional compensation method, i.e.,  $X_{TX} = X_{RX} = 0 \Omega$ . Fig. 6, Fig. 7 and Fig. 8 give  $R_{IN}$ ,  $X_{IN}$  and  $\theta$  for different  $X_{TX}$  and  $X_{RX}$ , respectively. In Fig. 6, it shows different  $X_{RX}$  have limited effects on  $R_{IN}$ . Note that  $X_{TX}$  does not affect  $R_{IN}$  [refer to (11)]. Compared to the limited effects on  $R_{IN}$ ,  $X_{IN}$  and  $\theta$  can be significantly affected by different  $X_{TX}$  and  $X_{RX}$ as shown in Fig. 7 and Fig. 8. When  $R_L$  is small, the use of positive  $X_{RX}$  can reduce  $X_{IN}$  and keep  $\theta$  near the zerophase point. But its influence can be ignored for large  $R_L$ . Compare to  $X_{RX}$ , the influence of  $X_{TX}$  is more obvious for large  $R_L$ . Therefore, it is reasonable to find an optimal pair of compensation capacitors to achieve small  $\theta$  for a large  $R_L$ range.



Fig. 6. The input resistance  $R_{IN}$  for different  $X_{TX}$  and  $X_{RX}$ .



Fig. 7. The input reactance  $X_{IN}$  for different  $X_{TX}$  and  $X_{RX}$ .

#### **B.** Parameters Optimization

Section III-A shows  $X_{TX}$  and  $X_{RX}$  have different effects on  $Z_{IN}$  and  $\theta$ . Therefore, it is promising to combine the advantages of  $X_{TX}$  and  $X_{RX}$  for different  $R_L$ , namely,  $X_{RX}$ for small  $R_L$  and  $X_{TX}$  for large  $R_L$ . It is proposed that the combination of optimal  $X_{TX}$  and  $X_{RX}$  can limit  $\theta$  variation within a small range. The static optimization problem can be stated:

- Objective: Minimize the peak  $\theta$  in a  $R_L$  range.
- Constrains: The system can be described by the model of the coupling coils [refer to (11)-(12)] and the rectifier [refer to Fig.3].
- Control variables:  $X_{TX}$  and  $X_{RX}$ , i.e., the compensation capacitors  $C_1$  and  $C_2$ .

Usually, the traditional parameters optimization method can be directly applied if the rectifier impedance transformation



Fig. 8. The phase of  $Z_{IN} \theta$  for different  $X_{TX}$  and  $X_{RX}$ .

model is known. However, it is difficult to describe the highfrequency switching behavior, especially obtaining its input reactance  $X_{REC}$ . Without  $X_{REC}$ , the optimal  $X_{TX}$  and  $X_{RX}$ can not be directly derived. In this paper, a global search is carried out in ADS to obtain the optimal  $X_{TX}$  and  $X_{RX}$ . The parameters here are the same as those in Section II-B. The step for  $X_{TX}$  and  $X_{RX}$  is 0.01  $\Omega$ . The optimal  $X_{TX}$  and  $X_{RX}$  are -5.88  $\Omega$  and 1.15  $\Omega$ , respectively.

Fig. 9 and Fig. 10 show the comparison of traditional compensation and the optimal compensation. The comparison for  $Z_{IN}$  is shown in Fig. 9. With the optimal compensation,  $X_{IN}$ can be significantly reduced, and  $R_{IN}$  almost doesn't change. The phase comparison is shown in Fig. 10. Compared with traditional compensation, the proposed optimal compensation can limit the variation of  $\theta$  in a small range, i.e.,  $-5^{\circ}$  to  $5^{\circ}$ .



Fig. 9. Comparison for  $Z_{IN}$  in simulation.



Fig. 10. Comparison for  $\theta$  in simulation.

## C. System Efficiency

In a WPT system as shown in Fig. 5, the system efficiency  $\eta_{SYS}$  (from the transmitting coil to the load  $R_L$ ) can be calculated as (13) shows.

According to (13),  $\eta_{SYS}$  can be affected by the value of  $X_{RX}$ . A small value of  $(X_{RX} + X_{REC})^2$  leads to a bigger  $\eta_{SYS}$ . In 6.78 MHz WPT system, since  $X_{REC}$  is negative(as shown in Fig. 3), a small positive value of  $X_{RX}$  in the optimal compensation will make  $(X_{RX} + X_{REC})^2$  smaller. Therefore, with the optimal compensation method  $\eta_{SYS}$  will become a little larger, which is verified in the simulation in Fig. 11.



Fig. 11. Comparison for  $\eta_{SYS}$  in simulation.

# IV. EXPERIMENTAL VERIFICATION

The system setup for the final experiment is shown in Fig. 12. This measurement platform consists of a 6.78 MHz power amplifier, two coupling coils, a full-bridge rectifier and an electronic load. In the experiment, the power amplifier can be tuned to provide a constant input current to drive the system for different  $R_L$ . The RMS value of this current is set at 0.5A.



Fig. 12. Experiment setup.

The parameters for the coupling coils and rectifier are the same as that used in the simulation. Through the current and voltage probes, the measured waveforms can be used to obtain  $Z_{IN}$  and its phase with an inverse FFT calculation. Before the experiment, a pure 50  $\Omega$  RF load is used for calibration and the initial phase difference between probes can be eliminated.

Fig. 13 shows the input impedance  $Z_{IN}$  seeing into the coupling coils. Using the optimal compensation, the input reactance  $X_{IN}$  can be significantly reduced to a very low level (-1  $\Omega$  to 2  $\Omega$ ). And the input resistance  $R_{IN}$  has little variation. The phase comparison is given in Fig. 14. Using the traditional compensation, the phase variation is from 15° to 35°. When the optimal compensation is applied, the original large phase variation can be successfully reduced to a level from  $-5^{\circ}$  to 5°. Fig. 15 gives the efficiency comparison. It shows that with the optimal compensation method the system efficiency will be improved in a certain degree. Compared to the traditional compensation, the optimal compensation shows its advantages in limiting the phase change and improving the system efficiency. These experiment results are well consistent with the simulation results given in Fig. 9, Fig. 10 and Fig. 11.



Fig. 13. Comparison for  $Z_{IN}$  in experiment.

# V. CONCLUSION

In this paper, the input impedance seen from the rectifier is first analyzed in ADS simulation. The occurrence of reactance

$$\eta_{SYS} = \frac{\omega^2 M_{12}^2 R_L}{\omega^2 M_{12}^2 (R_2 + R_{REC}) + R_1 (R_2 + R_{REC})^2 + R_1 (X_{RX} + X_{REC})^2}$$



Fig. 14. Comparison for  $\theta$  in experiment.



Fig. 15. Comparison for  $\eta_{SYS}$  in experiment.

is shown to introduce a large phase for the input impedance of a traditional SS compensation coupling coils. Based on the characteristics of high-frequency rectifier, a circuit model is built and analyzed in simulation when considering the rectifier input reactance. An optimal pair of SS compensation capacitors is found to limit the phase variation. Finally, a 6.78 MHz system is implemented in experiment. It shows that the optimal compensation capacitors can minimize the peak phase for the input impedance of the coils successfully.

## REFERENCES

 P. Li and R. Bashirullah, "A wireless power interface for rechargeable battery operated medical implants," *IEEE Trans. Circuits Syst. II, Exp. Briefs*, vol. 54, no. 10, pp. 912–916, 2007.

- [2] A. P. Hu, Wireless/Contactless Power Supply:-Inductively coupled resonant converter solutions. Saarbrucken, Germany: VDM Publishing, 2009.
- [3] C.-S. Wang, O. H. Stielau, and G. A. Covic, "Design considerations for a contactless electric vehicle battery charger," *IEEE Trans. Ind. Electron.*, vol. 52, no. 5, pp. 1308–1314, 2005.
- [4] N. A. Keeling, G. A. Covic, and J. T. Boys, "A unity-power-factor IPT pickup for high-power applications," *IEEE Trans. Ind. Electron.*, vol. 57, no. 2, pp. 744–751, 2010.
- [5] W. Zhong, X. Liu, and S. R. Hui, "A novel single-layer winding array and receiver coil structure for contactless battery charging systems with free-positioning and localized charging features," *IEEE Trans. Ind. Electron.*, vol. 58, no. 9, pp. 4136–4144, 2011.
- [6] J. J. Casanova, Z. N. Low, and J. Lin, "A loosely coupled planar wireless power system for multiple receivers," *IEEE Trans. Ind. Electron.*, vol. 56, no. 8, pp. 3060–3068, 2009.
- [7] D. Ahn and S. Hong, "Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer," *IEEE Trans. Ind. Electron.*, vol. 60, no. 7, pp. 2602–2613, 2013.
- [8] M. Fu, C. Ma, and X. Zhu, "A cascaded boost-buck converter for high efficiency wireless power transfer systems," *IEEE Trans. Ind. Informat.*, vol. 10, no. 3, pp. 1972–1980, 2014.
- [9] D. Krschner and C. Rathge, "Maximizing dc-to-load efficiency for inductive power transfer," *IEEE Trans. Power Electron.*, vol. 28, no. 5, pp. 2437–2447, 2013.
- [10] M. Fu, H. Yin, X. Zhu, and C. Ma, "Analysis and tracking of optimal load in wireless power transfer systems," *IEEE Trans. Power Eletron.*, vol. 30, no. 7, pp. 3952–3963, 2015.
- [11] S. Aldhaher, P. C. Luk, and J. F. Whidborne, "Tuning class e inverters applied in inductive links using saturable reactors," *IEEE Trans. Power Electron.*, vol. 29, no. 6, pp. 2969–2978, 2014.
- [12] C.-S. Wang, O. H. Stielau, and G. A. Covic, "Load models and their application in the design of loosely coupled inductive power transfer systems," in *Power System Technology, 2000. Proceedings. PowerCon* 2000. International Conference on, vol. 2. IEEE, 2000, pp. 1053–1058.
- [13] M. Fu, T. Zhang, C. Ma, and X. Zhu, "Efficiency and optimal loads analysis for multiple-receiver wireless power transfer systems," *IEEE Trans. Microw. Theory Tech.*, vol. 63, no. 3, pp. 801–812, 2015.
- [14] S. Cheon, Y. Kim, S. Kang, M. Lee, J. Lee, and T. Zyung, "Circuitmodel-based analysis of a wireless energy-transfer system via coupled magnetic resonances," *IEEE Trans. Ind. Electron.*, vol. 58, no. 7, pp. 2906–2914, 2011.
- [15] L. Chen, S. Liu, Y. C. Zhou, and T. J. Cui, "An optimizable circuit structure for high-efficiency wireless power transfer," *IEEE Trans. Ind. Electron.*, vol. 60, no. 1, pp. 339–349, 2013.
- [16] C. Wang, G. A. Covic, and O. H. Stielau, "Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems," *IEEE Trans. Ind. Electron.*, vol. 51, no. 1, pp. 148–157, 2004.
- [17] C.-Y. Huang, J. T. Boys, and G. A. Covic, "Lcl pickup circulating current controller for inductive power transfer systems," *IEEE Trans. Power Electron.*, vol. 28, no. 4, pp. 2081–2093, 2013.
- [18] Z. Pantic, S. Bai, and S. Lukic, "Zcs-compensated resonant inverter for inductive-power-transfer application," *IEEE Trans. Ind. Electron*, vol. 58, no. 8, pp. 3500–3510, 2011.
- [19] C.-S. Wang, G. A. Covic, and O. H. Stielau, "Investigating an lcl load resonant inverter for inductive power transfer applications," *IEEE Trans. Power Electron.*, vol. 19, no. 4, pp. 995–1002, 2004.
- [20] A. P. Sample, D. A. Meyer, J. R. Smith *et al.*, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," *IEEE Trans. Ind. Electron.*, vol. 58, no. 2, pp. 544–554, 2011.
- [21] T. C. Beh, M. Kato, T. Imura, S. Oh, and Y. Hori, "Automated impedance matching system for robust wireless power transfer via magnetic resonance coupling," *IEEE Trans. Ind. Electron.*, vol. 60, no. 9, pp. 3689–3698, 2013.