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Abstract—This paper discusses decentralized real-time en-
ergy management for multiple-source hybrid energy systems
(HESs) that adapts to the sudden change in system configu-
ration such as due to failure of certain devices. An engine-
generator/battery/ultracapacitor (UC) HES is chosen as a case
study facilitating the following theoretical discussion. The energy
management problem is first modeled as a non-cooperative game,
in which the different preferences of the energy sources (engine-
generator, battery pack, and UC pack) in actual operation are
quantified through their individual utility functions. The Nash
equilibrium is iteratively reached at each control instant via
a learning algorithm. Under the game theory-based control,
each source or player tends to maximize its own preference.
However, its satisfaction level also depends on decisions of
others. This real-time interaction in decision making provides
the proposed energy management a capability to autonomously
adapt to the reconfigured HES. A tuning procedure of weight
coefficients in the utility functions also helps to further improve
the adaptiveness of the decentralized energy management. Both
the simulation and real-time implementation show that the game
theory-based energy management strategy has a comparable
performance to the classical centralized benchmarking strategy.
Meanwhile, the decentralized strategy demonstrates an obvious
flexibility handling the cases when the configuration of the HES
varies both statically and dynamically.

Index Terms—Hybrid energy system, multiple sources, decen-
tralized control, game theory, reconfiguration.

NOMENCLATURE

g, G Engine-generator
b, B Battery pack
c, C Ultracapacitor pack
l Load
ux Utility functions (x = g, b, c, l)
ux,l Final form of utility functions (x = g, b, c)
ix Output currents (x = g, b, c)
i∗l Load command
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ax, bx, cx, Coefficients in ux (x = g, b, c)
Ig,opt Engine generator optimal output current
Ib,ave Battery average output current
Ib,l Battery last output current
Ic,fit Ultrapacitor target charge/discharge current
ωx Weights relating to sources in ux,l (x = g, b, c)
ωl,x Weights relating to load in ux,l (x = g, b, c)
ε Threshold for reaching Nash equilibrium
Θx Threshold for wx adaptive tuning (x = g, b, c)
Cg,ave Average engine-generator fuel consumption
Qb,loss Battery capacity loss
SOCc,ave Average UC pack SOC
Idif,ave Average load demand and current difference
tsim Simulation time

I. INTRODUCTION

DUE to the complementary features of various energy
storage and generation devices, hybrid energy sys-

tems (HESs), i.e., the combination of heterogenous energy
sources, have been intensively investigated in recent years.
These systems have wide applications in electric vehicles
(EVs), smart houses, microgrids, and smart grids, etc. A
typical HES usually consists of multiple major energy sources
(battery, fuel cell, photovoltaic panel, wind turbine, and engine
generator, etc.) and also assistive ones such as ultracapaci-
tor (UC) and flywheel [1]. For example, the basic concept
of a battery/UC HES is to use UCs, which have a high
power density, as a buffer to improve the performance of the
overall system in terms of efficiency, dynamic response, and
protection of battery [2]. A comprehensive review on UCs, in
terms of their control and management aspect, can be found in
[3], which summarizes the progresses on the modeling, state
estimation, and applications of UCs. It is especially interesting
to note that fractional-order calculus has been applied to
improve the accuracy in UC modeling and state of charge
(SOC) estimation [4]. The hybridization of batteries and UCs
also helps to avoid an oversized battery pack when meeting a
dynamic load demand. Further combination with other types
of energy storage devices and generators has been proved to
be a feasible solution to better satisfy the energy and power re-
quirements in different applications [5]. The major challenges
when discussing a HES are its sizing and energy management
problems. The sizing problem can be particularly treated as
a multi-objective (e.g., cost reduction and battery protection)
optimization problem and solved accordingly [6]. In a HES,
a number of heterogenous energy sources interact with each
other in a distributed manner. Those sources may have very
different preferences in operation. They have to work together
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in a dynamic environment, in which uncertainties in load
demand and system configuration may exist. Due to the failure
of a certain source, the configuration of a HES itself may
suddenly change to maintain the functionality of the overall
system, namely reconfiguration. The classical centralized en-
ergy management is known to be inefficient and lack flexibility
when handling highly dynamic and distributed systems, such
as with unpredictable reconfiguration in topology.

Centralized strategies are popular to manage HESs with a
fixed configuration. For example, rule based energy manage-
ment was applied in a series-parallel plug-in hybrid electric
bus, in which the parameters in the rules table were opti-
mized through dynamic programming [7]. Ref. [8] discussed
a fuzzy logic based energy management together with rule
based control targeting EVs powered by the battery/UC HES.
An adaptive fuzzy logic controller was designed to tune
the membership functions based on the recorded previous
driving conditions. In [9], the energy management problem
in a battery/UC HES was solved using Karush-Kuhn-Tucker
(KKT) conditions. The two objectives, extension of battery
cycle life and maintenance of UC charge/discharge capability,
are eventually combined to form a single objective optimiza-
tion problem. A framework of simultaneous optimal sizing
and energy management was proposed to optimally perform
onboard energy storage system selection (battery pack, UC
pack, or hybrid one), sizing, and power management in a
hybrid bus powertrain [10]. Reinforce learning has also be
applied in managing a fuel cell/ultracapacitor HES [11].

At the same time, decentralized strategies have also been
developed to solve the planning and energy management
problems in the HESs and larger systems such as microgrids
and smart grids [12], [13]. In terms of decentralized deci-
sion making, game theory is a particularly well-known tool
that represents the trade-offs among self-interested players
and predicts their choices. Interactions among heterogeneous
energy sources in a HES were expressed by a non-cooperative
game [5]. Distribution of load current was then calculated
through iterative solution of Nash equilibrium. Besides the en-
ergy management, the capacity allocation of a HES involving
wind power and photovoltaic generation is determined and
compared by finding the Nash equilibrium in both the non-
cooperative game and cooperative game [14]. Comparing with
the existing centralized energy managements, the decentralized
ones are especially expected to improve the flexibility such
as reconfigurability, scalability, reliability and fault-tolerance
of HESs. However, so far there is few discussion on control
strategies that adapt to the sudden change in the configuration
of a HES. This reconfiguration in system topology may
happen in real applications when the failure of energy sources
happens. There has been a rigorous investigation of fault
detection of the key components in HESs, particularly the
battery pack [15] [16]. The issue of communication dropouts
due to hardware malfunction, cyber attack, etc., has also been
addressed [17]. Mostly in HESs involving fuel cells, the fault-
tolerance control was developed against motor failure and
sensor errors [18], [19]. To the knowledge of the authors,
there lacks discussion on a control scheme, particulary in a
decentralized manner, that handles the cases when a HES

suddenly reconfigures such as due to the unpredictable failure
in its energy sources.

The purpose of this paper is to develop a game theory-based
decentralized control strategy for reconfigurable multiple-
source HESs. The energy management should be able to
be implemented in real time and autonomously adapt to a
reconfigured HES. In the case study, a triple-source HES,
which contains three heterogeneous energy sources (battery
pack, UC pack, and engine-generator) and load, is taken as
an example. Similar configurations involving engine generator
and energy storage devices have been discussed for shipboard
dc power systems, i.e., dc microgrids [10], [20]. As sources
of renewable energy, photovoltaic panel and wind turbine
are also popular in microgrids. In this paper, the energy
sources are first modeled as individual players. The different
preferences for the operation of the players are then quantified
using their individual utility functions (i.e., satisfaction levels).
The energy management problem is represented as a non-
cooperative game, in which each player tends to maximize its
own utility. However, the satisfaction level of every player also
depends on those of others. The solution at each control instant
or stage is iteratively reached at the Nash equilibrium via a
learning algorithm. This enables the energy management to
autonomously adapt to a reconfigured HES in real time. A tun-
ing procedure is also developed to adaptively adjust the weight
coefficients in the utility functions. Finally, the performance
of the proposed decentralized energy management is validated
both through simulation and real-time implementation, during
which various possible configurations of the multiple-source
HES are switched and tested.

Load

Eng.-Gen.

Battery

Pack
dc

dc

UC Pack
dc

dc

Db

Dc

ib

ic

ig

il

dc LinkPlayer No. 1

Player No. 2

Player No. 3

Player No. 4

il*

Fig. 1. Configuration of an engine-generator/battery/ultracapacitor HES.

II. CONFIGURATION AND MODELING

In this paper, an engine-generator/battery/ultracapacitor
triple-source HES is used as a case study that facilitates
the following theoretical discussion. As shown in Fig. 1,
the parallel-active topology is employed by which the major
devices are connected including the engine-generator, battery
pack, UC pack, load, and two bidirectional buck-boost dc-
dc converters. It is known that the parallel-active topology
provides a higher degree of flexibility and reliability than other
topologies [2]. The dc-link voltage can also be maintained
within a stable range under the parallel-active topology. Here
ig , ib, and ic represent the currents of the engine-generator,
battery pack, and UC pack, respectively. The two dc-dc
converters work to control the battery current (ib) and UC
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current (ic), respectively, through the duty cycle control (i.e.,
Db and Dc). In battery and energy management, the battery
equivalent circuit models are commonly used due to their low
computational complexity [5]. In this paper, the battery pack
is modeled by its open circuit voltage, internal resistance,
and two resistance-capacitance networks. Good agreement
between the following simulation and experimental results
validates the model accuracy. Meanwhile, it is especially
worthy of notice that a high-order physics-based battery model
can be simplified to reduce computational effort [21].

Due to the heterogeneity of the sources in the HES, the
engine-generator, battery pack, UC pack, and load are modeled
as individual players; while the dc link and communication
platform (such as a Wi-Fi network in the following experi-
ments) are treated as the environment, in which the players
exchange information and power. The players only share their
control variables (i.e., ig , ib, ic) and command (i∗l ) with each
other through the environment. i∗l is the load current (il) ref-
erence command, and physically il always equals the sum of
ig , ib, and ic. Meanwhile, the local information such as SOCs
of the battery pack and UC pack is well preserved internally.
Different with the classical centralized control, there is no a
main controller. Each player is distributively controlled by its
own controller based on the interaction with other players.
Note that this decentralized control strategy can be extended to
deal with a HES with more sources such as in the application
of microgrids. The well-known New European Driving Cycle
(NEDC) is chosen as a specific example of dynamic load
profiles, as shown in Fig. 2. The NEDC velocity profile is
converted into a power profile considering the longitudinal
vehicle dynamic of an EV [22]. It should be noted that this
load profile can be replaced by any other load profiles such
as residential load and industrial load. This paper develops
a general scheme for decentralized and scalable control of
multiple-source HESs.
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Fig. 2. Example dynamic load profile: New European Driving Cycle (NEDC).

III. FORMULATION OF NON-COOPERATIVE GAME

Here the management of the above multiple-source HES
is represented as a multiple-stage non-cooperative game that
determines the distribution of the load current. The three
energy sources and one energy consumer, namely the engine-
generator, battery pack, UC pack, and load, are treated as four
individual players with different objectives:

• Engine-generator: maintain a high fuel efficiency;
• Battery pack: extend its own cycle life;
• UC pack: maintain its charging/discharging capability;
• Load: fully meet the load demand.

A. Utility Functions
The objectives of the players are first quantified using their

respective utility functions in quadratic form [23]. Note that
other types of utility function could also be applied such as
logarithmic functions and linear functions [24], [25]. Here
quadratic functions are chosen because they are

• a widely used form such as in economics to model the
preference of players [13], [23];

• concave functions that guarantee the existence and
uniqueness of the Nash equilibrium.

1) Engine-generator: It is known that there exists the
highest efficiency operating point for an engine-generator,
which corresponds to an optimal output current Ig,opt. Thus
the below quadratic utility function ug is designed to reach
its peak value when the actual output current of the engine-
generator equals Ig,opt:

ug = agi
2
g + bgig + cg. (1)

The coefficients, ag , bg , and cg , are listed in Table I. The
values of ag and bg are taken as -1 and 2Ig,opt, respectively,
to maximize ug when ig equals Ig,opt (i.e., the preference
of the engine-generator), and cg is designed to normalize the
maximum of ug as one. All the coefficients in the below utility
functions, (2)(4) and (6), are similarly determined.

TABLE I
COEFFICIENTS OF UTILITY FUNCTIONS.

ax bx cx
Engine generator (g) -1 2Ig,opt 1-I2g,opt
Battery pack (b) -1 Ib,ave + Ib,l 1-I2b,ave-I2b,l
UC pack (c) -1 2Ic,fit 1-I2c,fit
Load (l) -1 2(ig + ib + ic) 1-(ig + ib + ic)2

2) Battery Pack: The utility function of the battery pack
ub is defined to emphasize the extension of the battery cycle
life, namely suppression of the variation in its output current.
Again, a quadratic function is applied,

ub = abi
2
b + bbib + cb, (2)

where ab, bb, and cb have a similar definition as the ones
for the engine-generator. bb here is a parameter which relates
to Ib,ave and Ib,l, the average battery current so far and the
battery current at the last control instant, respectively. The
utility function ub is maximized when the present battery
current ib equals (Ib,ave + Ib,l)/2, namely a smooth output
current from the battery pack. Note that the battery cycle life
is largely determined by the values of the battery current and
temperature [26]. The relationship between the battery current
and cycle life can be represented as follows,

Qb,loss = Ae
−Ea+BCRate

RTb (Ah)
Z , (3)

where Qb,loss is the loss of battery capacity due to the
ageing [27]. A, B, and Z are parameters achieved through
fitting the experimental data; CRate is discharging rate; Ea is
activation energy; R is gas constant; Tb is battery temperature;
and Ah is Ah-throughput. In the following simulation and
experiments, all these parameters of the battery pack are
experimentally calibrated [see Table II]. Note that here the
initial capacity of the battery is normalized to one.
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TABLE II
PARAMETERS OF BATTERY AGEING MODEL.

A B Z Ea R Tb

- - - J J/(mol·K) K
600 -140 0.55 30195 8.314 298

3) Ultracapacitor Pack: The utility function of the UC pack
uc is expressed as follows,

uc = aci
2
c + bcic + cc, (4)

where ac, bc, and cc are also listed in Table I. The purpose
of having a UC pack is to serve as an energy buffer. Thus the
preference of the UC pack is to maintain its SOC level at a
certain preferred value. Thus it is always capable to quickly
deliver or absorb power. The parameter bc can then be defined
to be proportional to Ic,fit,

Ic,fit =

(
2

vc − Vc,min

Vc,max − Vc,min
− 1

)
Ic,max, (5)

where vc, Vc,min, Vc,max, and Ic,max are the voltage, min-
imum voltage, maximum voltage, and maximum current of
the UC pack. The current Ic,fit directly relates to the SOC
of the UC pack. Assuming an equal possibility of charge
and discharge, Ic,fit is designed targeting a 50% UC SOC.
The above UC SOC control also helps to improve the energy
efficiency because the large UC internal resistance and low
output voltage can be avoided when the UC SOC is low [28].

4) Load: As an energy consumer, ideally the load command
i∗l should equal the sum of the actual output currents from the
three energy sources when they are all in operation. Thus the
utility function for the load ul is defined as

ul = ali
∗2
l + bli

∗
l + cl, (6)

where al, bl, and cl are coefficients and given in Table I. The
above utility function is maximized when i∗l exactly equals
(ig + ib + ic), which again is represented by bl.

5) Final Form of Utility functions: Note that the utility
function for the load only contains the control variables of
the energy sources, i.e., ig , ib, and ic. Thus the load should
not be treated as a fully independent player because it has no
its own control variable. It only shares the reference command
i∗l . A possible solution is to combine the utility of the load
with those of energy sources. Thus the final form of the utility
functions is modified as follows,

ug,l = wgug + wl,gul, (7)
ub,l = wbub + wl,bul, (8)
uc,l = wcuc + wl,cul, (9)

where wg , wb, wc, wl,g , wl,b, and wl,c are weight coefficients.
As explained in section III-C, the first three coefficients are
determined later via an adaptive tuning procedure because both
a specific load profile and reconfiguration (such as due to
the failure of a certain energy source) influence their optimal
values, while the last three ones are treated as penalty factors.
The physical meaning of the above final form of the utility
functions is that each energy source works to satisfy its own
preference, but at the same time it is required to contribute to

meeting the desired condition of i∗l = ig + ib + ic as much
as possible. Note that in real applications, a specific energy
source may fail and then quit the non-cooperative game, thus
the below relationship,

i∗l ≥ ig + ib + ic, (10)

holds. Note that here i∗l is the reference load command, not
the actual load current. When failures happen, the sum of ig ,
ib, and ic may be lower than i∗l , i.e., the derated operation
mode discussed in sections IV and V.

B. Nash Equilibrium

A non-cooperative game is then set up at each stage
(i.e., control instant). The game determines the load current
distribution among the three energy sources. It is represented
in the strategic form,

Gpd = {(G,B,C), {ig, ib, ic}, {ug,l, ub,l, uc,l}}. (11)

In the above form, each independent player, i.e., the engine-
generator (“G”), battery pack (“B”), or UC pack (“C”), is
assumed to be selfish, and thus it attempts to maximize its
own utility. However, the final value of utility function of
a single player, ug,l, ub,l, or uc,l, is determined not only
by its own control variable but also by control variables of
others and reference load command due to the interactions
occurring in the environment, i.e., the relationship described
in (6) and (10). Since the three independent players are selfish,
a balanced distribution of the load current settles down at
the so-called “Nash equilibrium” at each stage. Note that
here a single stage (i.e., at each control instant) is treated
as an independent game because the future load demand is
assumed to be unpredictable. Under the Nash equilibrium, all
the players’ utilities can not be improved if one of the players
unilaterally changes its decision/control variable (i.e., ig , ib,
or ic). Due to the concavity of the utility functions, ug,l, ub,l,
and uc,l, the existence and uniqueness of a Nash equilibrium
can be straightforwardly proved by solving the following best
response (BR) functions,

BRg :
∂ug,l

∂ig
= 0, BRb :

∂ub,l

∂ib
= 0, BRc :

∂uc,l

∂ic
= 0. (12)

The detailed proof of the existence and uniqueness of the
Nash Equilibrium is omitted here. Note that in the below
discussions, one or two energy sources are allowed to quit
the game such as due to failure, namely reconfiguration of the
HES. Thanks to the concavity of all the three utility functions,
the new Nash equilibrium still exists and is unique when there
are two functional energy sources, i.e., with one failed energy
source.

The purpose of this paper is to develop a decentralized
energy management strategy that autonomously adapts to
the reconfigured HES. Through the environment, each player
shares its decision, i.e., control variable (ig , ib, or ic), while its
internal information such as the SOC is internally preserved.
As shown in Algorithm 1, a learning algorithm is developed
for each stage using the engine-generator as an example.
The other two players apply the same algorithm. In the
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initialization step, each player shares its decision made at
the last stage, namely ig,k−1, ib,k−1, and ic,k−1. k represents
present number of stage. For the engine-generator, in order to
maximize its own utility function ug,l, its decision ig is solved
using its own best response function,

BRg : wg(2agig + bg) + wl,g [2i
∗
l − 2(ig + ib + il)] = 0,

(13)
which is initially under given ib = ib,k−1 and ic = ic,k−1.
Note that i∗l is the newest load command. The same procedure
repeats in the players of battery pack and UC pack, which in
turn updates their respective decisions (ib and ic). ig is then
iteratively calculated using (13) and with updated ib and ic
until it converges to a stable value. At the same time, the
convergence of ib and ic also iteratively achieves, namely the
Nash equilibrium of the non-cooperative game [see Fig. 3].
Due to the linearity of the response functions such as (13), the
solution of the Nash equilibrium is expected to be fast enough
to be implemented in real time, as validated in section V. All
the three players continue to operate at the Nash equilibrium
until the load demand changes and then they move to the next
stage of the game, i.e., convergence to a new Nash equilibrium.

Algorithm 1 Algorithm to reach Nash Equilibrium
1. Initialization

ig,last ⇐ ig,k−1, ib ⇐ ib,k−1, ic ⇐ ic,k−1

2. Learning Phase
Solve BRg(ig, ib, ic) for ig

3. Check Phase
if |ig − ig,last| < ε then

Go to step 4. Termination
else

1) ig,last ⇐ ig
2) Wait for updated ib and ic from other two players
3) Go to step 2. Learning Phase

end if
4. Termination

ig,k ⇐ ig
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Fig. 3. Convergence of decisions of the three players at an example stage in
the following simulation, Section IV.

C. Adaptive Tuning of Weight Coefficients

It is desirable that the weight coefficient for each player
can be also determined by the player itself. The values of
the weight coefficients are expected to be adaptively adjusted
under different cycles as well as with different combinations of

the energy sources such as when possible failure happens. An
initial optimal set of weight coefficients can be first determined
targeting a specific cycle, such as the example NEDC cycle.
This initial set can be solved through a multi-objective genetic
algorithm, as discussed in the following paragraph [29]. Here
the multiple objectives during an entire single cycle are Qb,loss

defined in (3), and

Cg,ave =

∑
Cg

N
, (14)

SOCc,ave =

∑
SOCc

N
, (15)

Idif,ave =

∑
|i∗l − (ig + ib + ic)|

N
, (16)

where N is the total number of the control instants; Cg,ave

is the average fuel consumption of the engine-generator;
SOCc,ave is the average SOC of the UC pack; and Idif,ave
is the average difference between the load demand and actual
total load current provided by the energy sources. The weight
coefficients, wg , wb, and wc, are adaptively tuned by the
individual players according to their own utilities [refer to (7)-
(9)]. A basic idea is that when the utility of a specific player is
low, the player will increase its weights and vice versa. Note
that similar tuning method has been widely applied in tuning
inertia weight of particle swarm optimization (PSO) [30].

In the present case study, wl,g , wl,b, and wl,c are treated
as penalty factors because it is a high priority request that the
sum of ig , ib, and ic should be as close as possible to i∗l . Thus
a large value such as 10 is chosen for wl,g , wl,b, and wl,c. This
way of determining penalty factors is a common practice for
optimization algorithms [31]. With the given values of the
penalty factors, the tradeoff relationship among the initial wg ,
wb, and wc can be represented by the so-called Pareto set. It is
known that the knee point of the Pareto-optimal front, which
is determined through the multi-objective genetic algorithm,
gives the most satisfactory solution among the above three
objectives/criteria, Cg,ave, Qb,loss, and SOCa,ave [9]. Note
that the objective of suppressing Idif,ave is reflected by the
penalty factors. The initial values of all the six weight coef-
ficients are listed in Table III. The three weight coefficients,
wg , wb, and wc, are then adaptively tuned as follows taking
wg as an example,

• If |ig − Ig,opt| ≥ Θg ,
then wg ⇐ max[min(wg,max, wg +∆wg), wg,min],

• If |ig − Ig,opt| < Θg ,
then wg ⇐ max[min(wg,max, wg −∆wg), wg,min],

where Θg stands for the threshold value; wg,max and wg,min

are the upper bound and lower bound, respectively; ∆wg is
the tuning step size. The difference between the preference
parameter Ig,opt and control variable ig is used to indicate
the satisfaction level of the utility of the engine-generator. All
the parameters for the tuning of the weight coefficients are
summarized in Table III. As shown in (6) and Table I, the
sum of the output currents of the energy sources is expected
to be as equal as the load current command. This requirement
is represented by the large wg,l, wb,l, and wc,l comparing with
wg , wb, and wc. If one or two sources fail, i.e., with zero output
current, the new Nash equilibrium will be reached through the
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learning algorithm developed in the above subsection. Note
that since the UC pack is an energy buffer due to its limited
energy density, it is not allowed to work as a sole energy
source.

TABLE III
DETERMINATION OF WEIGHT COEFFICIENTS.

Initial Values Adaptive Tuning
wg wl,g wg,max wg,min ∆wg

0.9 10 1 0.8 0.001
wb wl,b wb,max wb,min ∆wb

0.4 10 0.5 0.3 0.001
wc wl,c wc,max wc,min ∆wc

0.1 10 0.2 0 0.001

IV. SIMULATION RESULTS

Simulation is conducted targeting the following downscaled
experimental system in section V. For a quantitative evalua-
tion, the above four criteria, Cg,ave, Qb,loss, SOCc,ave, and
Idif,ave, are applied. Each of them directly corresponds to
its respective utility function [refer to (1), (2), (4), and (6)].
In the simulation and following experiments, the size of the
battery pack is determined to supply the one-third of the
average power in the example NEDC cycle, and the engine-
generator, a major energy source, provides the rest two-thirds
when operating at its maximum efficiency point, i.e., with the
output current of Ig,opt. As an energy buffer, the UC pack
is configured to supply all the dynamic load current between
904–1130 s in the NEDC cycle using the half of the UC pack’s
total capacitance [see Fig. 2]. Note that in the example NEDC
cycle, the period between 904–1130 s requires the fastest and
longest acceleration, i.e., a large dynamic load current.

A. Static Cases

Six different static cases (i.e., different combinations of the
energy sources) are investigated, namely with a fixed configu-
ration. For space conservation, only the current responses for
the combinations of GBC and BC are shown in Fig. 4(a) and
(b), respectively. Again “G”, “B”, and “C” denote the engine-
generator, battery pack, and UC pack, respectively. These two
example combinations, “GBC” and “BC”, represent, respec-
tively, normal operation and pure-electric derated operation
when the engine-generator fails. In the derated operation
mode, the maximum output current of the battery is limited,
5 A in the simulation. Note that as an energy buffer, the UC
pack is not allowed to operate alone.
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Fig. 4. Example current responses of ig , ib, and ic. (a) “GBC”. (b) “BC”.

The results of the four criteria are summarized in Table IV,
which are calculated for a single NEDC cycle. All the six
possible combinations of the energy sources are under the
game theory-based decentralized control. The performance
of the “GBC” combination is obviously the best. As shown
in Fig. 4(a), the engine-generator provides a stable output
current; the battery pack covers the slow dynamic current;
and the UC pack contributes the rest high dynamic current.
When one of the energy sources does not involve such as
the engine-generator in Fig. 4(b), the remaining two energy
sources (i.e., battery pack and UC pack) have to change their
strategies. A relative low performance is shown in Table IV
when comparing the other five combinations with the “GBC”
combination. It is natural that the two cases with a single
energy source (“G” and “B”) have the poorest performance.
Note that in these two derated cases, either the engine-
generator or battery pack is assumed to incapable to meet
the entire load demand alone. As shown in Fig. 5, the SOC
of the UC pack SOCc is well controlled to be close to 50%
in the “GBC”, “BC”, and “GC” combinations unless it has to
apply a large dynamic current at the end of the NEDC cycle,
i.e., the period between 904–1130 s. Meanwhile, the UC SOC
starts to recover after this period, namely from 1130 s.

TABLE IV
VALUES OF CRITERIA IN A SINGLE NEDC CYCLE.

Cg,ave Qb,loss SOCc,ave Idif,ave
(L/kWh) (J) (%) (A)

GBC 0.2621 1.47e-6 54.90 0.0219
BC - 1.77e-6 52.90 0.0251
GB 0.3171 1.72e-6 - 0.1025
GC 0.2948 - 47.66 0.0345
G 0.5000 - - 0.6438
B - 1.96e-6 - 0.4026

TABLE V
ADAPTIVE TUNING VERSUS STATIC WEIGHTS (“GBC” CASE).

Cg,ave Qb,loss SOCc,ave Idif,ave
(L/kWh) (J) (%) (A)

Static 0.2650 1.50e-6 57.23 0.0225
Adaptive 0.2621 1.47e-6 54.90 0.0219

(1.09%↓) (2.00%↓) (4.07%↓) (2.67%↓)
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Fig. 5. UC SOC responses.

For reference purposes, the criteria are compared when
using adaptive weight tuning and the static weights (i.e., the
initial values in Table III), taking the “GBC” combination as an
example. As shown in Table V, the results using the adaptive
tuning clearly show an improved performance. Additionally,
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Fig. 6 shows the normalized battery pack capacity evolution
profiles [refer to Section III-A2]. In the figure, one cycle
includes ten continuous discharge profiles in Fig. 4(a) (i.e., ib)
and later three-hour full charge. The scenario of “baseline”
refers to the case in which the battery pack provides the
entire load current, i.e., a conventional battery alone system.
As expected, the present triple-source HES obviously reduces
the battery degradation under the proposed control. Table VI
summarizes the average energy efficiencies, again taking the
“GBC” case as an example. ηb and ηc are the efficiencies of the
battery pack and UC pack, respectively. The energy manage-
ment here is a multi-objective one including the improvement
in energy efficiencies, i.e., energy saving, as discussed in
Section III-A1 and III-A3.
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Fig. 6. Battery pack capacity evolution with cycling (“GBC” case).

TABLE VI
AVERAGE ENERGY EFFICIENCIES (“GBC” CASE).

Cg,ave ηb ηc
(L/kWh) (%) (%)
0.2621 97.85% 92.59%

B. Dynamic Cases

In real applications, some of the energy sources may
suddenly fail and thus be cut off during the operation.
The dynamic case simulates a realistic situation when the
engine-generation and UC pack are cut off one by one. It
is challenging because in the example triple-source energy
system, the engine-generator is a major source of energy.
As shown in Fig. 7, the engine-generator is cut off at 400
s (i.e., ig = 0), and then the UC pack quits at 800 s
(again, ic = 0). The configuration changes from the original
engine-generator/battery/UC HES to a battery/UC HES and
eventually a battery-alone system. Thanks to the decentralized
nature of the game theory-based control, the energy system
autonomously adapts to the sudden change in its configuration.
The battery pack automatically supplies a large current after
400 s with the sudden absence of the engine-generator; and it
solely works in the derated operation mode when the UC pack
also fails at 800 s. Besides the dynamic current, the UC pack
also contributes to the average load current between 400–800
s, namely the continuous discharge shown in its SOC response
in Fig. 7. Note that in order to maintain an optimal output

TABLE VII
GT-BASED CONTROL VERSUS CENTRALIZED CONTROL.

Control Cg,ave Qb,loss SOCc,ave Idif,ave tsim
- (L/kWh) (J) (%) (A) (s)
GT-based 0.2621 1.47e-6 54.90 0.0219 0.84
Centralized 0.2600 1.38e-6 60.63 0 31.39

current (i.e., high fuel economy) of the engine-generator,
the UC pack is slightly charged before 400 s. Here it is
assumed that the controllers of the players, namely the energy
sources, are still functional despite the failures of the players
themselves. The other possible dynamic cases are similar and
thus the descriptions are omitted to avoid redundancy.
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Fig. 7. Current and SOC responses in example dynamic case (from “GBC”
to “BC” and then “B”).
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Fig. 8. Current and SOC responses under GT-based control and centralized
control.

C. Comparison with Centralized Control

The game theory-based decentralized control is compared
with centralized control, in which the control problem is also
based on the utility functions but formed through the weight-
sum method [32]. Note that the weight-sum method is a
typical approach to transform a multi-objective optimization
problem into a single-objective optimization problem. The
initial values of the six weights in Table III are applied.
The optimization problem is then solved through sequential
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quadratic programming (SQP), a popular iterative method for
nonlinear optimization [33].

The simulation results under the “GBC” combination are
shown and summarized in Fig. 8 and Table VII, respectively.
The game theory (GT)-based decentralized control demon-
strates comparable performance to that of the centralized
controls in terms of both current/SOC responses and the
first four criteria in Table VII. Thanks to the decentralized
nature, the required computational power of the game theory-
based control is much lower. It leads to much shorter overall
execution time when calculating over the same simulation
(Matlab/Simulink) and hardware platform [see tsim in the
last column of Table VII]. Unlike the centralized control, the
proposed game theory-based decentralized control is capable
to autonomously adapt to the variation in the system configu-
ration, as explained in the above two subsections.

D. Scalability

The enhanced scalability of the energy management is par-
ticularly expected to be an important advantage for applying
the game theory-based decentralized control. In this paper,
the triple source engine-generator/battery/ultracapacitor HES
is used as a case study. However, the proposed control scheme
itself is general for energy systems with more sources. Thus
for verification purposes, in the simulation the number of the
battery pack (with identical parameters) is assumed to increase
from 3 to 100. Figure 9 shows the numbers of iterations
required to reach the convergence of all the control variables
(i.e., the output currents from the sources) at an example stage
or control instant [refer to sec. III-B]. Under the game theory-
based decentralized control, the convergence speed does not
substantially increase such as with exponential increment.
This result further verifies the advantages of the proposed
decentralized control in terms of scalability and computational
efficiency. Note that there is a tradeoff between the value of
threshold ε and convergence speed. The threshold could be
treated as a design parameter for a specific target application.
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Fig. 9. Number of iterations under different number of battery pack and
various values of threshold.

V. EXPERIMENTAL IMPLEMENTATION

A down scaled test bench was built up to match the power
capability of the devices in the experimental system. The test
bench has the same configuration with the one in Fig. 1. As
shown in Fig. 10, the load profile, i.e., NEDC here, is emulated

Fig. 10. A down scaled test bench for the triple-source HES.
TABLE VIII

SPECIFICATIONS OF TEST BENCH.

Li-ion battery pack Two cells (series), 12.5 Ah/cell,
(Lishen LP2770102AC) 3.2 V/cell (Nominal Vol.)
UC pack Six cells (series)
(Nippon Chemi-Con DLE series) 1760 F/cell, 2.5 V/cell (Max Vol.)
Two dc-dc converters Peak power: 100 W and 400 W
(Design/fabricate in house) Switch frequency: 20 kHz
Electronic load Max power: 600 W (1 PLZ-50F,
(Kikusui PLZ-50F/150U) 4 PLZ150Us with 1.5–150 V

0–30 A each)
Power supply No. 1 Max power: 800 W
(Takasago ZX-800L) 0–80 V, 0–80 A
Current sampling resistors Three RH250M4: 0.01 Ω
(PCN Corporation RH series) Accuracy: ±0.02%

through the combination of the power supply No. 1 and
electronic load; the engine-generator model is implemented in
the host PC, namely a virtual player of engine-generator in the
setup. This virtual implementation of the engine-generator, i.e.,
hardware-in-loop (HIL) simulation, is a common practice in
existing research [34]. The specifications of the battery pack,
UC pack, dc-dc converters, electronic load, and power supplies
are listed in Table VIII. The two dc-dc converters work in
current-control mode.

The two National Instruments (NI) myRIO controllers
collect data and calculate the output currents of the two
real players (the battery pack and UC pack), namely the
current reference commands of the two bi-directional buck-
boost dc-dc converters connected with the packs, respectively.
As explained above, the controller of the engine-generator is
virtually implemented in the host PC. Note that here one single
myRIO only deals with its own player, i.e., a decentralized
control configuration. The load current distribution is updated
at each control instant with an interval of 1 s. The three
controllers of the players (two myRIOs and one host PC)
determine the output currents from their respective players,
i.e., the Nash equilibrium reached through the proposed learn-
ing algorithm. The controllers communicate with each other
through a Wi-Fi network.

As shown in Fig. 11, the current and voltage responses
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Fig. 11. Experimental current and SOC responses in example dynamic case
(from “GBC” to “BC” and then “B”).

TABLE IX
CRITERIA IN SIMULATION AND EXPERIMENTS.

Cg,ave Qb,loss SOCc,ave Idif,ave
(L/kWh) (J) (%) (A)

Experiments 0.2694 1.52e-06 45.69 1.0777
Simulation 0.2684 1.51e-06 45.71 0.8484

in experiments well match those in the simulation when the
engine-generator and UC pack are cut off at 400 s and 800
s, respectively [see Fig. 7]. This validates the above theoret-
ical discussion and real-time implementation of the proposed
game theory-based control. Again, in experiments the engine-
generator provides an almost constant output current that
corresponds to its optimal fuel economy; the battery pack
becomes a major source when the engine-generator is cut off
from 400 s; the UC pack supplies the most of the dynamic
load demand before it quits at 800 s. The required load is fully
met until the system enters the derated operation mode, i.e.,
the battery-alone case. The values of the four criteria, average
fuel consumption, battery capacity loss, average UC SOC, and
average battery current difference in the single NEDC cycle
are co-listed with the simulation results. As shown in Table IX,
the two results well match each other. The small differences
between the simulation and experimental results are mainly
due to the unavoidable sample errors and extra energy losses
in circuits and wires in real experiments.

VI. CONCLUSION

This paper develops a decentralized energy management
strategy for reconfigurable multiple-source energy systems. It
uses the engine-generator/battery/UC HES as a case study. The
energy management problem is treated as a non-cooperative
game, in which the engine-generator, battery pack, UC pack,
and load are modeled as individual players. Each player
possesses a utility function quantifying its unique preference
in actual operation, i.e., improving fuel economy, extending
battery cycle life, maintaining UC charging/discharge capabil-
ity, or meeting load demand. Through a learning algorithm,

the Nash equilibrium is iteratively reached and updated to
determine a balanced load current distribution among the
players. A tuning procedure is also included to make the
weight coefficients in the utility functions adaptive to the
present cycle and configuration of the example HES. Both
the simulation and experimental results validate the improved
flexibility and scalability when applying the game theory-
based energy management. This decentralized control also
demonstrates comparable performance to that of the classical
centralized control.

The proposed approach (i.e., combination of multi-agent
modeling and game theory-based control) could be further
extended to solve the energy management problem in other
HESs involving more heterogeneous “players” such as a
microgrid, which is prone to communication dropouts, failures,
etc. Again, for such systems, control strategies are required
to effectively deal with the dynamic power (e.g., wind and
solar) and load (e.g., buildings and EVs) profiles, different
natures/preferences of the components involved, possible re-
configuration of the overall system such as due to failures
or applications themselves (e.g., changing number of plugged
in EVs), etc. This paper provides a foundation to further
address the above issues when managing more complicated
HESs including the microgrids.
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