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Abstract—This paper studies an energy management problem
for an isolated microgrid including photovoltaic panels, wind
turbines, batteries and ultracapacitors. A normal form game is
proposed for the energy management to maximize the energy
utilization ratio of renewable energy sources, extend the battery
life and keep the ultracapacitors able to compensate the dynamic
variations. The solution of this game represented by Nash
equillibrium is analytically derived and proved to be the existing
and unique. A simulation platform using data in second is
established to study the energy management approach based on
probability distrubution funcions. In simulation, the game theory
based approach has a comparable performance against the rule
based control, while the pre-knowledge of the load demands and
weather information is not required. Also the game theory based
approach is more flexible than rule based approach under the
influence of uncertain weather.

Index Terms—Game theory, isolated microgrid, photovoltaic
panel, wind turbine, Nash equilibrium.

I. INTRODUCTION

The microgrid is a networked group consisting of different
distributed energy sources, such as photovoltaic panels (PVs),
wind turbines (WTs), and energy storage devices [1]. The
network of microgrids can operate either in grid connected
mode or in isolated mode [2]. The isolated microgrids are
worth being studied because isolated microgrids have some
distinct applications such as in avionic, automotive, marine
industries and remote rural areas [3]. There are many problems
to be solved in isolated microgrids. One of them is to find
a proper energy management approach due to the existence
of substantial energy sources and demand fluctuations. This
paper introduces a flexible distributed approach to energy
management of an isolated microgrid.

Before looking at the energy management approaches, the
system configuration is first introduced clearly. The studied
system includes PVs, WTs, battery pack and ultracapacitor
(UC) pack, which are connected to the DC bus. The power
suppliers include two renewable energy sources due to the
complementary behavior of solar irradiance and wind speed
patterns [4]. Since batteries have high energy density while
ultracapacitors have high power density, the hybrid energy
storage system (HESS) consists of a battery pack and a UC
pack. Each device has its own distributed controller that can
determine its power flow autonomously.

As the HESS is one important part of this isolated mi-
crogrid, the energy management approaches of HESSs can

become good references. In fact, many approaches have been
proposed to control the battery-ultracapacitor HESSs [5]–
[7]. The multi-objective optimization is used to determine
the trade-off between the energy loss minimization and the
battery protection [5]. In the ideal situation, the batteries
satisfy the average load demand (ALD), while the UCs meet
the rest dynamic load demands [6]. To implement the ALD-
based control, the load demands should be known in advance
and the capacity of the UCs should meet the dynamic load
requirement. In [7], the optimization problem is solved by
Karush-Kuhn-Tucker conditions, whose results have a compa-
rable performance with ALD-based control without the pre-
knowledge of the load demands.

In terms of energy management approaches in isolated
microgrids, many technologies have already been studied [8]–
[10]. A fixed control strategy is proposed in [8] for a hybrid
WT/PV reverse osmosis desalination microgrid. But only
operating constraints and power balance are considered in this
approach. An optimal approach for the isolated wind-diesel
microgrid in [9] is used to optimize energy of the storage
system and operation cost of the microgrid. However, the
prediction of WT output power and load demands should be
known in advance. In [10], the supervisor control is proposed
to determine the power distribution between PVs, WTs and
storage system. In this approach, the WTs have priority to
provide power compared with PVs, and the battery will start
to discharge if the renewable energy sources can not meet the
load demands. This approach may be influenced by uncertain
weather.

This paper is organised as follows. Section II describes
the environment data, the system topology, devices modeling
and sizing. To implement the normal form game, the utility
functions of all the devices are defined in section III. Then, the
detail normal form game is presented in section IV. In section
V, the simulation is conducted under the comparison with rule
based approach. Finally, the conclusion is given in section VI.

II. ISOLATED MICROGRID MODELING

This section introduces the environment, system topology,
the simulation models and sizings of all the devices.

A. Environment

The hourly wind speed, solar irradiance, temperature and
load profiles are obtained on Feb. 2nd of San Diego Lindbergh



Field from System Advisor Model (SAM) [11]. SAM is
designed by National Renewable Energy Laboratory (NREL)
to facilitate decision making in the renewable energy systems.

Considering the intermittent nature of renewable energy
sources, the environment data was randomized according to
the probability distribution functions given in [12], as shown
in Fig. 1. Also, the 24 hours was compressed into 24 minutes
in order to shorten the simulation and experiment time, i.e.,
each minute in this figure represents one hour in the real world.
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Fig. 1. Randomized environment data.

B. System topology

The topology of studied isolated microgrid is shown in
Fig. 2. The voltage of DC bus is stabilized by an extra capaci-
tor which is not shown in the figure. The four control variables
are iw, ip, ic and ib. These variables are chosen according to
the requirement of the future experiment. The PV panels
and WTs are emulated by Hardware-In-the-Loop emulations,
while the battery pack, UC pack and corresponding DC-DC
converters are real devices [13]. il is obtained from the load
profile in each time instant.
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Fig. 2. System topology.

C. Models of devices

1) Photovoltaic panels: The equivalent circuit model of
single PV cell is shown in Fig. 3(a). The relationship between
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Fig. 3. The equivalent circuit models.

I and U can be expressed as

I = Iph − IS

{
exp

[
q(U +RsI)

kT

]
− 1

}
− U +RsI

Rsh
, (1)

where Iph is photocurrent, IS is diode saturation current, q
is electron charge (1.60217646 × 10−19C), k is Boltzmann
Constant (1.3806503 × 10−23J/K), T is temperature, Rs

is series resistance and Rsh is shunt resistance. The real
module used in the simulation is SunPower SPR-X21-335-
BLK, whose specifications can be obtained from SAM as
listed in Table I. The relationship between the output power
and output current of single PV panel is depicted in Fig. 4(a).

TABLE I
PARAMETERS OF SINGLE PV PANEL UNDER STANDARD TEST CONDITION

Number of cells 96 Open circuit voltage 67.9 V
Maximum power 335.2 W Short circuit current 6.2 A
Max power voltage 57.3 V Rs 0.5 Ω
Max power current 5.8 A Rsh 457.1 Ω

2) Wind Turbines: Similarly, the real module is Kestrel
e400i chosen from SAM. The power curve of single WT is
depicted in Fig. 4(b).
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(a) PV power curve.
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(b) WT power curve.

Fig. 4. The characteristic curves.

3) Battery Pack: As shown in Fig. 3(b), the parameters Uoc

and rb in the equivalent circuit model for battery pack can be
calculated using six-ordered polynomial functions [14]. The



transient response in minute and second of the battery pack can
be modelled by different time constants, i.e., τm = Rt,mCt,m

and τs = Rt,sCt,s, respectively.

Uoc = aoc,0 + aoc,1x+ aoc,2x
2 + · · ·+ aoc,6x

6, (2)

rb = ar,0 + ar,1x+ ar,2x
2 + · · ·+ ar,6x

6, (3)

where x is the state-of-charge (SOC) of battery. All the
coefficients are listed in Table II.

TABLE II
PARAMETERS OF ONE LI-ION BATTERY CELL

aoc,0 2.30 aoc,1 15.96 aoc,2 -99.35
aoc,3 295.20 aoc,4 -446.49 aoc,5 331.41
aoc,6 -95.56 ar,0 0.02 ar,1 -0.24
ar,2 1.69 ar,3 -5.66 ar,4 9.67
ar,5 -8.13 ar,6 2.67

Rt,s 5.60 mΩ Ct,s 12200 F
Rt,m 2.87 mΩ Ct,m 45300 F

TABLE III
PARAMETERS OF UC PACK

C 1.76 kF Rc,p 3 kΩ
Rc,s 2.50 mΩ Icmax 20 A

4) Ultracapacitor Pack: Fig. 3(c) shows the equivalent
circuit model of UC pack. C is the capacitance of UC pack.
Rc,s is the internal resistance, while Rc,p is used to model
the leakage current. The detail values of these parameters are
listed in Table III, where Icmax is the maximum permitted
current amplitude of the UC pack.

D. Sizing

The sizings of PV panels and WTs are determined to meet
the load demands of the whole day [15]. In Fig. 5, the PV
power and WT power are the maximum output power under
the environment data in Fig. 1, which is calculated based
on (1) and Fig. 4(b) respectively. The capacity of UC pack
is determined based on the maximum difference between
supplied power and load power, because the function of UC
pack is to deal with transient huge power. The cumulated
energy is the integration of these differences and can represent
the cumulated energy of the whole system without storage
devices. The capacity of battery pack is determined according
to the maximum value of the cumulated energy. If the SOC
of battery pack is zero at the beginning, then the battery pack
should be able to store the maximum amount of cumulated
energy so that the system can be self-balancing during this
day.

III. FORMULATION OF UTILITY FUNCTIONS

In order to implement the normal form game, appropriate
utility functions must be defined, which can quantify the
degrees of preference across alternatives. This section gives
the definitions of specific utility functions for all the devices
in the system.
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Fig. 5. Data analysis for sizing.

A. Photovoltaic panels

The PV panels want to maximize their energy utilization.
The utility function of PV panels is defined as follows.

up = 1− np(ip − I∗p )
2, (4)

where I∗p is the corresponding current when PV panels have
the maximum output power and np is a normalization factor
which can be defined as follows.

np =
1

(I∗p )
2
. (5)

The normalization factor is used to normalize the range of up
into [0, 1]. The maximum output power of PV panels can be
obtained from Fig. 5. Then the range of output current [0, I∗p ]
can be derived through dividing the power by the DC bus
voltage.

B. Wind Turbines

Similarly with PV panels, the utility function of WTs is
defined as follows.

uw = 1− nw(iw − I∗w)
2, (6)

where I∗w is the corresponding current when WTs have the
maximum output power and nw is a normalization factor.

C. Battery Pack

The battery pack wants to extend its cycle life, which can
be achieved by minimizing the amplitude and the variation
of the battery current ib [16]. To minimize the amplitude, the
utility function is defined as

ub1 = 1− nb1(ib − µib)
2, (7)

where µib is the mean value of ib from the beginning of
the operation to the current control instant and nb1 is a
normalization factor which can be defined as follows.

nb1 = min

{
1

(Ibmax − µib)2
,

1

(Ibmin − µib)2

}
, (8)



where Ibmax and Ibmin are the maximum and minimum values
of ib in the current record. Also, in order to minimize the
variation, the utility function is defined as

ub2 = 1− nb2(ib − Iblast)
2, (9)

where Iblast is the battery current in the last control instant and
nb2 is a normalization factor which can be defined similarly
with nb1. The two objectives are combined together using
weighted sum method. Thus the utility function of battery pack
is defined as

ub = wb1ub1 + wb2ub2, (10)

where wb1 and wb2 are two weights.

D. Ultracapacitor Pack
The UC pack aims to become an energy buffer of the

whole system to compensate the dynamic current variation
and improve the overall performance of the HESS. Thus, the
stored energy should stay at half of the energy capacity as
much as possible to ensure the energy adjustment ability for
the next control instant. In terms of the current, the desired
current can be formulated as

I∗c =

(
2

v2c − V 2
cmin

V 2
cmax − V 2

cmin

− 1

)
· Icmax, (11)

where Vcmax and Vcmin are the upper and lower bounds of
the UC pack voltage. I∗c wants to keep the stored energy at
the desired value and its magnitude is proportional to the rest
energy in UC pack. When the difference between the rest
energy and desired energy becomes larger, the magnitude of
I∗c will become greater. The desired energy can be represented
as

V ∗c =

√
V 2
cmax + V 2

cmin

2
. (12)

The utility function of the UC pack is defined as

uc = 1− nc(ic − I∗c )
2, (13)

where nc is the corresponding normalization factor.

E. Modification of utility functions
The four control variables must satisfy the Kirchhoff’s

current law which is formulated as follows.

ic =
il − iw − ip − (1−Db)ib

1−Dc
, (14)

where Db and Dc are duty cycles of the two corresponding
bidirectional DC-DC converters. To combine this equality
constraint with the utility functions, the utility function of UC
pack is added to the other three functions because the UC pack
is working as an assistive device in this system. The utility
functions of PV panels, WTs, and battery pack are modified
by adding several weights as follows.

upc = wpup + wcpuc (15)
uwc = wwuw + wcwuc (16)

ubc = w′b1ub1 + w′b2ub2 + wcbuc (17)

The determination of these weights is discussed in the next
section.

IV. NORMAL FORM GAME PROCESS

This energy management problem can be solved using a
normal form game G = [3, (ip, iw, ib), (upc, uwc, ubc)] [17].
The PV panels, WTs and battery pack are treated as self-
interested players. At each time instant, each player needs
to determine its strategy, i.e., the value of the corresponding
current. As all of them want to maximize their own profits, the
final solution of the game is given by Nash equilibrium. No
one wants to deviate from the Nash equilibrium individually,
otherwise its utility will be minished.

A. Nash Equilibrium
The Nash equilibrium can be obtained by the best response

process which is to choose the strategy to maximize its own
utility given the strategies of the others are fixed [18]. The
reaction functions are obtained by taking the partial derivatives
of utility functions as follows.

∂uwc

∂iw
= 0,

∂upc
∂ip

= 0,
∂ubc
∂ib

= 0, (18)

which give us

ip = kp + kpwiw + kpbib, (19)

iw = kw + kwpip + kwbib, (20)

ib = kb + kbpip + kbwiw. (21)

Here the explicit reaction functions are easily derived due to
the benefits of quadratic utility functions. That is also the
reason why the utility functions are chosen to be quadratic
functions. The explicit form is also of benefit to the computer
programming and future experiment implementation. The first
three constants in the reaction functions are

kp =
2wpnpI

∗
p +

2wcpncil
(1−Dc)2

− 2wcpncI
∗
c

(1−Dc)

2wpnp +
2wcpnc

(1−Dc)2

, (22)

kpw =
− 2wcpnc

(1−Dc)2

2wpnp +
2wcpnc

(1−Dc)2

, (23)

kpb =
− 2wcpnc(1−Db)

(1−Dc)2

2wpnp +
2wcpnc

(1−Dc)2

. (24)

Other constants can be represented similarly. Combining
(19),(20) and (21), the Nash equilibrium is calculated as

ip =
(1− kwbkbw)(kp + kpbkb) + (kpw + kpbkbw)(kw + kbwkb)

(1− kpbkbp)(1− kwbkbw)− (kwp + kwbkbp)(kpw + kpbkbw)
,

(25)

iw =
(1− kpbkbp)(kw + kwpkp) + (kwb + kwpkpb)(kb + kbpkp)

(1− kpwkwp)(1− kpbkbp)− (kwb + kwpkpb)(kbw + kbplpw)
,

(26)

ib =
(1− kpwkwp)(kb + kbpkp) + (kbw + kbpkpw)(kw + kwpkp)

(1− kpwkwp)(1− kpbkbp)− (kwb + kwpkpb)(kbw + kbplpw)
.

(27)

This also proves the existence and uniqueness of the pure
strategy Nash equilibrium of this normal form game. The Nash
equilibrium can also be solved in a distributed manner using
(19),(20) and (21), which helps to build distributed controllers
in real application.



B. Weight coefficients determination

The Nash equilibrium can be calculated after all the weight
coefficients are determined. To determine the weights, some
requirements should be clarified firstly. The summation of all
the weights in the same equation should be equal to one, i.e.,

wp + wcp = 1, (28)
ww + wcw = 1, (29)

w′b1 + w′b2 + wcb = 1. (30)

According to the function of the UC pack which is an
assistive device in this system, the corresponding weights are
determined based on the current stored energy. When the
difference between stored energy and desired energy becomes
larger, the weights should also becomes larger. Meanwhile, the
utility of UC pack is not very important to the whole system
when the difference is very small. Thus, the weights for the
UC pack are determined in an adaptive way as follows.

wcp = wcpmin +
1− wcpmin

(V ∗c )
2 − V 2

cmin

∣∣(V ∗c )2 − v2c
∣∣ , (31)

wcw = wcwmin +
1− wcwmin

(V ∗c )
2 − V 2

cmin

∣∣(V ∗c )2 − v2c
∣∣ , (32)

wcb = wcbmin +
1− wcbmin

(V ∗c )
2 − V 2

cmin

∣∣(V ∗c )2 − v2c
∣∣ . (33)

Then the problem is transformed to determine
wcpmin, wcwmin, wcbmin and w′b1

w′b2
. These four parameters

can be determined by finding the Pareto frontier, which is
regarded as the future work.

V. SIMULATION

The simulation is conducted under the environment shown
in Fig. 1. The time step is one second and the total control
instants is N = 24∗60+1 = 1441. In order to do experiment
in the future, the PV power, WT power and load power are
scaled down for 100 times. The DC bus voltage is chosen as
24 V.

A. Evaluation criteria

Five parameters are used to evaluate the performance of the
energy management, including the energy utilization ratio of
the PV panels ηp, the energy utilization ratio of the WTs ηw,
the average battery current µib, the variance of the battery
current σ2

ib and the average energy difference between the
energy stored in the UC pack and the desired energy µEc.
They are formulated as follows. Because the DC bus voltage
is stabilized by an extra capacitor and is regarded as a constant,
the energy utilization is calculated only based on the current
records.

ηp =

∑
ip∑
I∗p
, (34)

ηw =

∑
iw∑
I∗w
, (35)

µib =
1

N

∑
ib, (36)

σ2
ib =

1

N

∑
(ib − µib)

2, (37)

µEc =
1

N

∑∣∣∣∣12Cv2c − 1

2
C(V ∗c )

2

∣∣∣∣ . (38)

B. Simulation results
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Fig. 6. Simulation results.

The four parameters are chosen by experience, as wcpmin =

0.1, wcwmin = 0.1, wbmin = 0.1 and w′b1
w′b2

= 0.3. The power
profiles are shown in Fig. 6 in the simulation. The evaluation
criteria values are compared with the rule based control, as
listed in Table IV in the first case. In this rule based control,
the power distribution between power supply and storage
system is determined by supervisor control , while the power
distribution within the storage system is determined by ALD-
based control. The two mentioned rule based approaches have
been briefly introduced in the introduction section. The game
theory based approach has a comparable performance against
that of the rule based approach. The rule based approach can
achieve 100% energy utilization ratio and zero average battery
current due to the proper predictions, i.e., it requires good
pre-knowledge about the environment data and load demands.
However, the game theory based approach does not need these
pre-knowledge.



TABLE IV
EVALUATION CRITERIA COMPARISON

Case Approach ηp ηw µib σib µEc

(%) (%) (A) (A2) (J)

1 Game theory based 99.23 91.66 0.04 0.06 251.59
Rule based 100 100 0 0 337.98

2 Game theory based 98.99 92.12 0.06 0.06 187.42
Rule based 76.08 100 0 0 334.59

3 Game theory based 99.75 92.46 0.13 0.07 136.16
Rule based 100 100 0.3 0 332.62

C. Flexibility

To illustrate the influences of uncertain weather to two
different energy management approaches, other two cases are
considered as shown in Table IV and analysed below individ-
ually. Case 2 represents when there is more energy generated
by the renewable energy sources than expected, which means
that the weather is better than expected so that more energy
can be generated by PV panels and WTs. The game theory
based approach maintains the similar performance compared
with case 1 in terms of the first four criteria and achieves
even smaller µEc (the smaller the better), while the rule
based approach performs obviously worse in terms of ηp.
These differences are because the game theory based approach
can utilize those unexpected extra energy to undermine the
fluctuations in Ec. The ηw is not affected in rule based
approach because the energy generated by WTs have priority
to be utilized compared with the energy generated by PV
panels under supervisor control.

Meanwhile, case 3 represents when there is less power
generated by renewable energy sources than expected so that
the HESS needs to provide more power to meet load demands.
In this case, the increment of µib under game theory based
approach is smaller (the smaller the better), accompanied with
smaller µEc. The increment of µib under rule based control
is larger because the UC pack will always deal with all the
fluctuations under ALD-based control while the batteries and
UC packs can share the fluctuations in game theory based
approach. All in all, it can be concluded that game theory
based approach is more flexible than rule based approach
under the influences of uncertain weather.

VI. CONCLUSIONS

In this paper, a game theory based approach is proposed
for the energy management of an isolated microgrid using
normal form game. The utility functions for all the devices
are clearly defined to maximize the energy utilization ratio
of the renewable energy sources, extend the battery life
and improve the ability of ultracapacitors to compensate the
dynamic load. The solution of this normal form game is
analytically derived whose solving process can be used to
build distributed controllers. The randomized environment
data is used to test the prosed approach, and the data in
second is compressed to 24 minutes to represent the operation
during the whole day which can shorten the simulation time

without losing the characteristic. In simulation, the proposed
approach has a comparable performance against the rule based
approach which combines the supervisor control and ALD-
based control, while the proposed approach does not require
to get the load profile and weather information in advance.
Also the game theory based approach is more flexible than
rule based approach under the influence of uncertain weather.
In the future, more appropriate weights should be determine
by finding Pareto fronts.
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