
Two-stage Distributed Energy Management for
Islanded DC Microgrid with EV Parking Lot

Amro Alsabbagh, He Yin, Songyang Han, Chengbin Ma∗
Univ. of Michigan-Shanghai Jiao Tong Univ. Joint Institute,

Shanghai Jiao Tong University, Shanghai, P. R. China
Email: amro.alsabbagh@sjtu.edu.cn, yyy@sjtu.edu.cn, hansongyang@sjtu.edu.cn, chbma@sjtu.edu.cn

Abstract—This paper introduces a distributed energy manage-
ment for islanded DC microgrids with electric vehicles (EVs)
penetration. The energy management problem is divided into
two stages. The first, named as filtering stage, is controlled
through wavelet filter using the ultracapacitor. The second one
is modeled as a noncooperative stackelberg game, where the
battery energy storage system is designed as a leader and
EVs as followers. The preference of the battery energy storage
system is designed to extend its cycle life while for each EV’s
preference is to maximize its charging power. The consensus
network is utilised to reach the Nash equilibrium within the
followers at each control instant. The simulation results show
the power distribution among the system’s units throughout one
day. Moreover, comparable outcomes with the centralized method
have been illustrated under two available power scenarios i.e.,
two weather profiles.

Index Terms—Islanded microgrid; Renewable energy source;
Hybrid energy storage system; Electric vehicle; Wavelet filter;
Game theory; Consensus network.

I. INTRODUCTION

The soaring of environmental concerns has motivated the
focus on microgrids (MGs) and electric vehicles (EVs). The
long term harvesting energy and high energy efficiency have
also increased their researches pace. MG is a local controllable
power grid with distributed energy generations (DEGs), energy
storage systems (ESSs), and loads [1]. Moreover, it can be
extended by plugging in electric vehicles [2]. Microgrid can
operate either in grid-tied mode, or islanded mode [3]. The
importance of islanded microgrids can be considered by its
role in the networked microgrids, and applications powering
remote areas, islands, and large buildings. Though the former
main focus was on AC microgrids, recently, much care goes to
DC microgrids especially for commercial and residential appli-
cations due to the technological advances in power electronics.
Furthermore, DC systems have various advantages over their
AC rivals for instance: higher efficiency, larger controllability
and entirely decoupled from the grid [4]. Apart from their
beauties and benefits, handling and controlling MG’s compo-
nents and EVs aren’t trivial or straightforward. More attention
and time should be paid in designing a convenient control
for higher utilization of MG and drawbacks avoidance [5].
Thus, energy management problem (EMP) in microgrids has
been widely studied in recent years. Essentially, EMP can
be classified into two classes: the centralized EMP and the
decentralized one. For the centralized case, [6] applies the

model predictive control technique for islanded AC MGs. The
EMP is decomposed into unit commitment and optimal power
flow problems to avoid a mixed-integer non-linear formulation.
[7] discusses a rule-based energy management for grid-tied DC
distribution with EVs. The proposed method was based on
real-time decision making. [8] applies the EMP to maximize
the total exchange cost and minimize the cost. A simple search
strategy based on Taguchi’s orthogonal array is designed
for solving the optimization problem. [9] introduces off-line
optimization approach to minimize the total energy cost drawn
from the main grid over a finite horizon. On the other hand,
decentralized EMP has also been applied in MGs. Its advan-
tages are mainly to lower the communication bandwidth and
computational capabilities as well as to allow flexibility over
reconfigurable system. [10] introduces a decentralized power
management for dc MG with multiple renewable DEGs and
ESSs. Though the good results, the configuration of the system
is fixed. [11] proposes decentralized energy management to
control a grid-tied MG with EVs. Since the MG is connected to
the grid, the charging of EVs are designed in a simple prefixed
way, voltage constant and current constant modes. This method
cannot show the case when there is a low available power
for charging which can be met in the islanded MG. Optimal
allocation of the available charging power of EVs based on
consensus algorithm is done [12]. Charging powers of EVs
are set to minimize the total charing cost regardless of their
characteristics.

To the best knowledge of the authors, non of the papers
in the literature discussed the the interaction between the
microgrid units themselves and charging EVs. Moreover, this
paper focuses on the islanded microgrid thus handles the
problem from the energy perspective rather than price. The
following features are the contribution of the proposed energy
management method in this paper:

• Fully distributed, i.e., no centralized controller is required.
• Robust, i.e., the time of joining or leaving EVs will not

affect the system.
• Fast, i.e., the proposed algorithm is fast in execution time

to reach the equilibrium among the units.

This paper is organized as follows. In Section II, system
structure and model have been presented. Then, distributed
energy management method is introduced in section III. While



section IV is devoted for the simulation results. Finally, the
conclusion is drawn in Section V.

II. SYSTEM STRUCTURE AND MODEL

The proposed MG consists of renewable energy sources
(RESs); wind turbine system (WTS) and photovoltaic System
(PVS), hybrid energy storage system (HESS); ultracapacitor
and battery energy storage systems (UESS) and (BESS), load,
and parking lot to charge a fleet of EVs. Each of this unit
is connected to the DC-bus through a compatible converter.
Both WTS and PVS are working at the maximum power point
tracking (MPPT) algorithm. The system configuration is illus-
trated in Fig. 1. This paper focuses on a future experimental
validation, thus the size of the system has been set to match
the existing laboratory testbed.

Fig. 1. System Structure

A. RESs, HESS, EVs and load models

The models of WT and PV can be derived as in [13].
While, BESS and UESS are modeled by their equivalent
circuit models as shown in Fig. 2 [14]. Open circuit voltage,
internal resistance, and resistance-capacitor combination for
BESS and the capacitance, internal resistance, and leakage
current for UESS. Since this paper focuses on the charging part
of EVs, each EV ∈ N (number of EVs) can be considered as
a battery (on-board battery) with charger (DC/DC converter).
The procedure for modeling BESS can also be used here [14].
For the load, it is taken as a real-world commercial building
profile (e.g., office) from San Diego city, USA [15]. It should
be noted that any type of load profile such as residential,
industrial, etc., or any location can be chosen.

Fig. 2. The equivalent models of (a) BESS cell. (b) UESS cell.

B. Constraints

The system has a plenty of constraints which reflect the
existing physical limitations e.g., DC-bus voltage and capacity
of each device in MG. Since this paper focuses on the islanded
microgrid, it is of interest to highlight the law of energy
conservation, equality constraint, expressed in (1).

h = Pwt + Ppv − Puc − Pl − Pb −
N∑
j=1

Pev,i = 0, (1)

where Pwt, Ppv , Puc, Pl, Pb, and
N∑
j=1

Pev,i are the WTS, PVS,

UESS, load, BESS, and summed of EVs powers, respectively.

C. Uncertainties

The more data profile models match the daily life ones,
the more stable and efficient system is achieved. To this aim,
it is more convenient to introduce the following uncertainty
models:
1) Weather data: Weibull distribution is chosen to model
wind speed variations, while Beta distribution is selected for
modeling solar irradiance uncertainties [16].
2) Load, EVs’ capacities and initial SOC : load fluctuations,
capacities of EVs (i.e., passenger cars, vans, etc.) and initial
SOC of EV (i.e., previous trips and incentives of EVs’
drivers) can be modeled by Gaussian distribution [17].

D. Sizing

For convenient sizing, i.e., to keep the system working
permanently and efficiently, the following guidelines should
be borne in mind:

1) The number of WT and PV modules is to meet the total
load demand i.e., commercial household and EVs loads.

2) The ratio between WT and PV modules depends on some
criteria such as setup cost, weather data abundance.

3) BESS’s capacity should hold the cumulative differences
between the generated and consumed powers.

4) Ultracapacitor should be responsible for the high-
frequency power in the system.

Accordingly, the size of the system can be designed success-
fully . The system size in this paper is listed in table I.

TABLE I
SIZE OF THE SYSTEM

Component WTS PVS UESS load BESS EV1,2,3

Rated Capacity 90 84.4 3.36 25 175 12/24/12
kWp kWp kWh kW kWh kWh

III. DISTRIBUTED ENERGY MANAGEMENT METHOD

This paper divides the energy management problem into
two stages. This conceptual division highlights the relations
between the units inside the system. Each stage is discussed
as follows,



A. First Stage Control

Its purpose is filtering (smoothing) of the generated power.
Here, UESS tries to take the responsibilities of the short-
term power (high-frequency). In such a way, elimination of
fluctuations and smoothing procedure of the generated power
will be gained besides protecting and prolonging cycle lives
of the remaining units in the system. To this intent, three-level
Haar wavelet filter is used to control UESS. Here, the level of
wavelet decomposition is set by the desired cut-off frequency.
Fig. 3 shows the procedure along with the working principle
structure of the wavelet filter.

Fig. 3. Block diagram of the first stage control.

Where H0 and H1 are the low and high pass filters with
eight-sample window. In fact, the reason behind choosing the
Haar based filter is due to the the straightforward procedure
and simplicity in determining the high and low pass filters
coefficients [18]. The sum of the high components (D1, D2

and D3) will go to the UESS while the low component (A3)
will be considered as the filtered generated power which goes
to the second stage control as follows:

Pren = Pwt + Ppv, (2)

Puc = D3 +D2 +D1, (3)

Pren,fil = A3, (4)

with Pren is the generated power from WTS and PVS, and
Pren,fil is the filtered generated power. It is noteworthy to
mention that maintaining the DC-bus voltage relies on UESS
also, so the UESS’s DC/DC converter is in fact a regulator.

B. Second Stage Control

It is worth to remind the competition behaviour of the
charging EVs and the physical access ability of the BESS
along with the probable change number of EVs and their SOCs
and BESS’s SOC at each stage i.e., independent stages. Thus,
the energy management problem is modeled as a multistage
noncooperative generalized stackelberg game i.e., distribution
of the filtered power among the remaining units. In this game,
BESS is set as the leader, while EVs are designed to be the fol-
lowers. Thus, the formulation of this game can be written in its
strategic form, G = [ N∪B, (Pev,i)i∈N ∪Pb, (uev,i)i∈N ∪ub]
with N is the number of the followers, B indicates to BESS,
Pev,i and Psum are the strategy sets for the followers and
the leader, and uev,i, ub are the utility functions for them,
respectively.

C. Utility Functions

In this paper, the quadratic form is selected to describe
the preferences of players [14], [19]. The key points behind
this selection are: 1) commonly and successfully applied
in smart grids and EVs to form players’ preferences [19],
[20]; 2) concavity feature which guarantees the existence and
uniqueness of Nash equilibrium.

1) Battery energy storage: the preference is to extend its
cycle life through making the charging/discharging power
equals to the optimal one (i.e., reflecting its physical dynamic
behaviour). Thus the utility function of BESS is to maximize
(5).

ub = −(Pb − P optb )2, (5)

with,

P optb = −1[SOCb − (SOCminb )ψ(SOCmaxb )1−ψ]P refb
(6)

=

 (SOCmaxb − SOCb)P refb N = 0

−(SOCb − SOCminb )P refb N > 0,
ψ = sgn(N ),

where P optb is the optimal instant power of BESS, SOCb is
the state of charge of BESS, SOCminb and SOCmaxb are the
minimum and maximum allowed SOC of BESS, P refb is the
optimal reference charging/discharging power at the minimum
allowed SOC and sgn is the sign function.

In fact, BESS tends to have charge in the absence of
EVs, and discharge meanwhile their existence. In such
a away, BESS can help to buffer the power and utilize it
during the intermittent or lack of renewable energy generation.

2) Electric vehicles: each EV is willing to enlarge its own
charging power, thus the aim is to maximize (7).

uev,i = −1

2
SOCev,iP

2
ev,i + P refev,iPev,i (7)

Likewise, SOCev,i is the state of charge of EV’s battery,
P refev,i is the unit reference charging power of the on-board
battery which can be set by multiplying the minimum allowed
SOC by the optimal charging power of it, and Pev,i is the
charging power of EV.

D. Generalized Stackelberg Nash Equilibrium

Here, the solution of the stackelberg game will be shown.
For the leader, the solution is straightforward and can be
written as,

P ∗b = P optb + ∆P, (8)

where, ∆P is the feedback power from the system due
to the common constraint and local EVs’ constraints e.g.,
the available power to charge EVs exceeds their demands.
Whereas, under an available power (Pava) for charing EVs,



there exists another game between the followers who share
the following inequality constraint,

N∑
i=1

Pev,i ≤ Pava, (9)

Pava = Pren,fil − Pl − Pb (10)

Actually, this noncooperative power distribution game is a
generalized Nash equilibrium problem (GNEP) with all player-
s need to reach so-called Nash equilibrium to define the power
distribution at each stage. In this paper, the distributed charging
algorithm to find GNE is based on Karush–Kuhn–Tucker (KK-
T) conditions of optimality and Lagrange multipliers method.
Where, the general optimization problem for each player as
well as KKT conditions with the common inequality constrain
are shown as follows,

Min {−uev,i}

S.t. g =

N∑
i=1

Pev,i − Pava ≤ 0
(11)

Lev,i(Pev,i, λev,i) = −uev,i + λev,ig (12)

dLev,i
dPev,i

= −∇Pev,iuev,i + λev,i∇Pev,ig = 0, (13)

where λev,i is the Lagrange multiplier of each player. The
distributed method tries to reach the most socially stable
equilibrium by making all λev,i’s have the same value [19].

This decentralized method relies on communications be-
tween players, so it is more convenient to show the whole
envisioned conceptual structure of the system as in Fig. 4.
Here, two layers are shown, the physical layer, and the cyber
layer besides the in-between control mapping. The first one
represents the physical system dynamics, while the second
depicts such communications between the nodes i.e., leader
and followers.

Fig. 4. The distributed energy management scheme within the system layers

The aim in this decentralized method is to let each player
updates its demand repetitively until a uniform value of all
λev,is is obtained. To this end, the concept of the consensus
network is utilised [20]. Here, each player is represented
by a node and the nodes are connected by links i.e., com-
munications between neighbours are allowed, to form the
entire network. Intuitively, because of the distributed energy
management nature, there is an individual controller for each
player who can share only its own control variable (λev,i)
rather than sharing all its parameters to others, and utilize the
previous two layers.

In the proposed algorithm, one of the system nodes will:
i) check the validity of the inequality constraint; ii) assist in
reaching the power equilibrium state by tuning its parame-
ters corresponding to the power mismatch i.e., violating (9).
Without the loss of generality, this node will be indexed “1”.

The attempt to attain the equilibrium can be accomplished
through iterative manner. The proposed consensus-based dis-
tributed power management (CDPM) algorithm for a single
stage of the whole procedure is shown below. Where each
local controller at a node can execute its belonging part. At
the first step, an initialization of all λev,is has been done
with zero values i.e., giving maximum charging powers to
EVs. Then, the consensus phase takes place which pursues
to converge all the values of λev,is to a single one. This
can be achieved by updating each node’s λev,i utilizing the
sum of weighted differences between this node’s λev,i and its
neighboured nodes’ λev,is as in line 3. Where Ni is the set
of neighbours of node i, and wi,j is the connectivity strength
between node i and j and should be chosen within [0 1/n]
to insure the intended convergence. When the convergence is
achieved, the power distribution among the players will be
assigned accordingly. Afterwards, the validity of the common
constraint will be checked. The algorithm will reach the Nash
equilibrium the time the constraint is satisfied. Otherwise, it
will be repeated again carrying a modification on the λev,1 as
a translation of the power difference.

Fig. 5 shows the convergence of λev,is in such a stage,
where three EVs exist. The convergence manner just follows
the mechanism described before by mentioning the red color
is the λev,1 which takes care of the convergence. All the values
begin with zero then increase according to the power mismatch
until they reach the final value i.e., the equilibrium. As it can
be seen, the convergence is fast enough to be implemented in
real applications.

IV. SIMULATION RESULTS

The simulation platform is Matlab with 64-bit, 2 core
processor (2 GHz), and 6 GB RAM. First, the power and
SOC distribution responses within the units throughout whole
day for the proposed control algorithm are presented. It is
supposed that the coming time interval between EVs is 30
(min). Moreover, three cases have been chosen for the coming
time of EVs, i.e., C1:morning, C2:afternoon and C3:evening.
As it can be seen from Fig. 6, the dynamic generated power
by WTS and PVS or consumed power by load follow the



Algorithm CDPM
I. Initialization
1: λev,i(0) = 0 ; ∀i ∈ N

II. Consensus Phase
2: while δλev,i > ε0 do ; ∀i ∈ N
3: λev,i(k + 1) = λev,i(k) +

∑
j∈Ni

wi,j(λev,j(k)− λev,i(k))

4: Pev,i =
P refev,i − λev,i(k + 1)

SOCev,i
5: end while

III. Checking Constraint
6:

||
N∑
i=1

Pev,i − Pava|| ≤ ε1 :

{
Y es→ Terminate

No→ Continue

IV. Tuning 1’s Parameters

7: Pev,1(k + 1) = Pev,1(k) + kp(

N∑
i=1

Pev,i − Pava)

8: λev,1(k + 1) = P refev,1 − SOCev,1Pev,1
V. Go back Step II

Fig. 5. Number of iterations for convergence of λev,is.

aforementioned functions. Since UESS is at the first control
stage and has only relation with the generated power, its power
will be the same in the three cases. As set, UESS’s power is
highly dynamic and vanishes at zero value in the absence of
renewable powers. The BESS’s power in the three cases shares
the same dynamic in the absence of EVs i.e., before coming
of EVs and after their leaves. Meanwhile their presences, the
dynamic follows the BESS-EVs interaction. In either case,
BESS’s power dynamics are done in low-frequency comparing
with that of UESS. For EVs’ powers and as it determined by
their preferences, each EV is charged by its maximum power
for a period of time then drops slightly as to the increment in
SOC. The three cases are only shifted to each other, thus, the
coming time of EVs will not effect the system performance.

On the other hand, the SOC distribution response is shown
in Fig. 7. Since its task is a filter, UESS’s SOC should change
between a specific range and end, ideally, at its initial value
(here, 0.5). BESS’s SOC reflects its mission by supporting
the load demand and charging EVs with power. The only
difference of its SOC in the three cases is in the existence

Fig. 6. Power distribution response.

of EVs. Moreover, the final value of SOC matches the initial
value, which indicates the proper size of the system. EVs’
SOCs show their initial values and increments until the final
values i.e., fully charged, with similarity in the three cases.

Fig. 7. SOC distribution response.

Second, to validate the performance of the proposed dis-
tributed algorithm, a comparison with the centralized control
has been done. The centralized control method used here is the
sequential quadratic programming (SQP). Three quantitative
criteria have been chosen for evaluation named as execution
time (ET) i.e., for the algorithm code, charging time (CT) i.e,
elapsed time to fully charge EV, and mean square fluctuation



(MSF) i.e., reflects the smoothness in charging.

MSF =
1

N

∑
(P tev,i − P t−1ev,i )

2, (14)

with P tev,i and P t−1ev,i are the charging powers of EVi at time t
and t− 1, and N is the number of charging power samples in
the whole charging time for each EV. Here, two scenarios are
chosen, the first is a normal day where a plenty of power exists,
the second is under lack of power i.e., partially non windy or
cloudy day. Since the results are the same in the first scenario
for both control methods and match the ones in Fig 6, only the
second scenario is shown in Fig. 8. While, the results under
comparison criteria for both scenarios are listed in table II. It
is clear that the results in the first scenario in terms of MSF
and CT are the same. While for the second scenario, though
the centralized method has advantages over the distributed one
in MSF (i.e, smoother charging) and charging time (i.e., faster
charging) but the results are comparable. However, in terms
of ET it is obvious that the proposed algorithm is faster by
70.39 % in the worst case (i.e., in second scenario when the
three EVs exist).

Fig. 8. EVs Power Response under the second scenario by the centralized
and distributed control methods.

TABLE II
EVALUATION CRITERIA

Method Evaluated Element Senario 1 Senario 2

Cen. Dis. Cen. Dis.

MSF (kW2)
EV1 .019e-3 .019e-3 .0048 .0115
EV2 .107e-3 .107e-3 .0260 .0428
EV3 .019e-3 .019e-3 .0070 .0124

CT (Min)
EV1 165 165 188 195
EV2 177 177 276 285
EV3 189 189 221 223

ET (Sec)
EV1 .0581 .0136 .0615 .0138
EV1,2 .0621 .0154 .0682 .0155
EV1,2,3 .0707 .0173 .0743 .0220

V. CONCLUSION

This paper proposed a two-stage distributed energy man-
agement for islanded DC microgrid with EVs penetration. The
first stage was considered as a filtering stage for the generated
powers, and controlled by wavelet filter through UESS. The
second stage, introduced a noncooperative stackelberg game

to distribute the power between BESS and EVs. BESS was
chosen as a leader while EVs as followers. Moreover, The
convergence algorithm to Nash equilibrium among the EVs
had been shown. In the simulation section, power and SOC
responses for one day had been illustrated. The results showed
how the EVs are satisfied according to their preferences by
the charging powers. Then, quantitative comparisons with the
centralized optimization method had been presented under two
weather scenarios. The results showed comparable outcomes
with the proposed distributed method along with leading
advantage in the execution time, at least 70.39 % faster.
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