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Abstract—The charging problem becomes prominent with the
increasing number of electric vehicles. It is necessary to built
charging station (CS), like the gasoline station, to satisfy the
recharging and be convenient for the drivers. In this paper, a new
type of charging station integrated with renewable energy source
was studied. A hierarchical energy management strategy oriented
to real-time application was proposed to handle the uncertainties.
To determine the optimal size of the CS by considering multi-
objective including economic, environment and battery energy
storage system degradation, Monte Carlo simulation was adopted
to solve the problem with many uncertainties. We treated battery
degradation as a specific objective function. And we obtained the
optimal Pareto set. The result demonstrated the optimal decision
variable for CS sizing can compromise the objectives as well as
realize the reasonable resource dispatch.

Index Terms—charging station, electric vehicles, uncertainty,
energy management strategy, optimal sizing

I. INTRODUCTION

Recently, electric vehicles (EVs) have attracted much more
attention since they use clean electricity. And large progress in
lithium-ion battery propels the development of EVs. However,
it is challenging that the growing number of EVs means huge
charging demand and will definitely aggravate the power grid
load. Traditional approach is to build more power plants for
extra electric power, which is costly and brings environmental
problems.

Integration with renewable energy sources such as solar and
wind power is an efficient way to moderate the problem. Thus,
it is necessary to research on establishing a proper electric
vehicle charging station with hybrid energy source. Several
papers have investigated the optimal planning or sizing of
EV charging station with renewable energy source. In [1] the
size of the battery storage was optimized through minimizing
the total energy cost. It employed two typical irradiance
scenarios and specified delivery EV charging patterns. Optimal
design of an electric vehicle charging station considering
various renewable energy sources with the goal of minimizing
the total monetary cost was analyzed in [2]. The decision
variables were the size of the PV array, size of each diesel
generator, number of battery energy storage system units,
and grid purchase/sell. But there was little instruction about

the internal operated energy management strategy. In [3], a
dynamic programming algorithm was utilized for EV charging
scheduling after determining the solar power and vehicle
charging demand and compared with a uncontrolled method
by evaluating the economics and carbon tax. We can find that
those studies treated the charging demand as fixed value to
input the decision model, which neglected the uncertainties in
reality.

What’s more, when discussing the size optimization of the
charging station, the energy management strategy should be
determined among the renewables, energy storage and grid.
Meanwhile, the charging strategy for electric vehicle should
also be clarified. So far extensive studies on EV charging
have been conducted. In [4], a globally optimal scheduling
scheme for charging and discharging of electric vehicles were
developed to minimize the total cost of the EVs by optimizing
the total load and charging power. Dynamic programming
algorithm was used in [5] to find the economically optimal
solution for the vehicle owner by optimizing the charging time
and energy flow and participating in ancillary service mar-
kets. However, those optimal EV charging station scheduling
mentioned above require forecasted distributed generation and
load demand, and the forecasts were assumed accurate in their
model [6]. In addition, as number of electric vehicle increases,
the computational complexity of charging management using
centralized control can be dramatically high for realistic com-
putational capability.

Therefore, decentralized charging control strategy has re-
ceived much attention for EV charging because of high po-
tential to real-time implementation. A decentralized charging
scheduling was proposed in [7], where utility company broad-
casts the price and EVs choose their own charging profiles,
instead of being instructed by a centralized infrastructure,
to achieve the objective of valley filling. Game theoretical
methods are also widely used to study EV charging problem. A
noncooperative Stackelberg game was built in [8], where the
leader is smart grid and electric vehicles are followers, and
through solving Stackelberg equilibrium electric vehicles can
decide their own charging strategy while smart grid optimize
its benefit. A hierarchical game approach was applied in a



real-time optimal energy and reserve management of electric
vehicle fast charging station which equipped with battery
storage and PV cite in [9].

The previous study [10] verified that the result considering
uncertainties was different from that without uncertainties.
Given this background, this paper is devoted to addressing
the optimal sizing for an EV charging station incorporating
hybrid energy source system. A distributed game theory based
charging strategy was applied to treat with the EV group
charging power dispatch. And multiple decision variables were
taken into account, and Monte Carlo simulation (MCS) was
conducted to obtain the distribution of multi output attributes
from the standpoint of economics, environment and battery
aging. Finally, considering the defect of MCS which probably
depends on the discrete decision variables defined by the
designer, genetic algorithm based multi-objective optimization
combining MCS was adopted to obtain the optimal decision
variables and compared that with simply using MCS.

The remainder of this paper is organized as follows. We
first detail the configuration and modeling of the EV charging
station in Section II and then introduce the formulation of
the game theory based charging strategy in Section III. A
sizing decision model and MC simulation based algorithm are
presented in Section IV. The associated analytical results and
optimal size of EV charging station are discussed in Section
V. Finally, conclusion is drawn in Section VI.

II. SYSTEM CONFIGURATION AND MODELING

A. Charging Station Configuration

The architecture of the developed grid-connected PV pow-
ered EV charging station (EVCS) in this paper is shown
in Fig. 1. The key components of the EVCS are the PV
system, the battery energy storage system (BESS) and a grid
connection system. All these components are connected to a
DC voltage bus through incorporating DC/DC converters and
AC/DC inverter.

Fig. 1. Architecture of EVCS

PV system is generally the main energy source in EVCS
and operates at the Maximum Power Point Tracking (MPPT)
mode to maximize the utilization of the solar energy. And
once confirming the PV panel size, the generated power

of PV system will mainly depends on the current weather
condition such as irradiation and temperature. Due to the
intermittency of renewable energy sources, BESS is always
used to complement the deficiency of PV panel. What’s more,
BESS can also abstract the excess energy from the PV system.
Therefore a bidirectional DC/DC converter is used for BESS,
and all of others are unidirectional converter or inverter. The
function of grid-connected system is to guarantee the normal
charging service for EV in some specific conditions (e.g. in
the evening) where both PV system and BESS cannot satisfy
the incoming EV charging demand.

B. Subsystem Modeling
1) PV system: An equivalent circuit is used to model the

PV cell and detailed in [11]. Then the output current of PV
can be obtained. The cell model is scaled to an PV array by
connecting npv in series, thus the output power of PV system
Ppv is calculated by following equation 1.

Ppv(k) = Ipv(k)Ucell(k)npv (1)

where k denotes the time instant, Ipv and Upv represent the
output voltage and the current, respectively. the MPPT mode is
employed for PV system to improve the PV energy conversion
efficiency.

2) BESS and EV: Batteries are used as energy storage
system in the EVCS. The deterministic discrete time state of
charge (SOC) equations of the battery model can be described
as follows [12]:

SOC(k) = SOC(k − 1) − ηIbat(k)∆t

Q
(2)

where η is the Coulombic efficiency, the Ibat represents the
output current and if it is positive value, it means battery
discharging in this instant and on the contrary the negative
value represents charging, k denotes the time instant and δt is
the sampling interval. Q is the nominal capacity of the battery.
The governing equation (2) is also applied to calculate the
SOC of the battery pack in EVs.

3) EV Stochastic Modeling: EVs play an uncertain role in
the whole charging system and will have huge influence on the
effect of energy management. To model the EV uncertainties, 4
uncertainties in EV charging demand are considered including
the initial charging SOC, the battery pack capacity in EV, the
amount of charging EV and the EV arriving time. Among
these, Gaussian distribution model are used to model the first
three uncertainties [13, 14]. And the initial SOC value is
assigned with mean value µ = 0.35 and standard variance
σ = 0.75 between 0.2 and 0.5. Through investigating the EV
market specified in the field of passenger car produced by
main automotive companies, the battery pack capacity ranges
from 24 kWh to 100 kWh. So the capacity model parameter
is setup with µ = 62 and σ = 24. EV number model is with
µ = 100 and σ = 25. Poisson process is used herein to model
the customer arriving to charging station which is also widely
used [15, 16]. Through above analysis, the four uncertain
parameters are modeled. The distribution results based on 100
EVs are shown as the following Fig. 2(a) to Fig. 2(c).
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Fig. 2. Uncertainty distribution of 100 EVs

C. System Modeling

When the EVCS operating, energy flow transits among
different components in complex mode but power conservation
should be satisfied at each instant within the whole system as
follows,

PEV s(k) = Pgrid(k) + Ppv(k) + PBESS(k) (3)

where PEV s is the charging demand of EVs group, Pgrid is the
output power of the utility grid, PBESS is the battery charging
power or discharging power and k denotes the .

III. ENERGY MANAGEMENT STRATEGY

A. EV Charging

Energy management strategy is needed in the system to
appropriately control the energy flow among different energy
components as well as determine the charging power dispatch
to each EV connected with the EVCS. Meanwhile, the energy
management strategy will also be used for simulation in the
following section to solve the sizing problem.

As to charging power dispatch problem for EV, we adopt
the game theory based energy management strategy which
can refer our previous work [17], in which each EV can be
treated as an independent player. They can determine their
own charging powers to maximize their charging objective
functions shown as following equation 4, which are utilized
to describe the satisfaction level,

max ui =
P ∗
i

SOCi
ln(pi + 1)

s.t.

{ ∑n
i=1 pi ≤ ptotal, i = 1, 2, . . . , n

0 ≤ pi ≤ P ∗
i , i = 1, 2, · · · , n

(4)

where i refers to the ith EV, P ∗
i is the maximum allowed

charging power depending on the type and capacity of the EV
battery pack, ptotal is charging limitation and is the common

constraint to all EVs, and pi is the solution after solving the
equation 4.

Each EV determines its charging power to optimize its
objective function 4, and the solution can be solved by Karush-
Kuhn-Tucker (KKT) conditions of optimality. The detailed
solve and the proof process of the existence of the Nash
Equilibrium can be found in [17].

B. EVCS Energy Management Strategy

Due to the existence of uncontrolled stochastic uncertainties,
it is difficult to implement an optimal approach to manage the
output power ratio between the PV, BESS and utility grid.
In this paper, the energy production from PV and BESS is
prioritized to use for charging demand over grid energy. When
the output power of PV system is enough to the EV charging
demand, the excess power of PV system will be stored a
certain amount of energy in the BESS for future use. If the
charging demand is higher than the available power of PV,
BESS will operating in the discharge mode to make up the
difference amount of power. If PV production exceeds the
consumption and BESS capacity, the PV will stop working.
Furthermore, if both PV system and BESS still cannot satisfy
the charging load, the utility grid will start to participate in
the energy system to support the service availability. That is,
the grid power has the lowest priority to feed the load.

IV. EVCS SIZING DECISION MODEL

Once determining the energy management strategy, the
EVCS system can operate normally to meet the expected
demand. However, except the basic supporting charging ser-
vice, it is also important designing an appropriate EVCS size
to meet other objectives, such as minimizing the total cost,
minimizing the impact on environment damage. The main
factors impacting those results include the capacity size of
PV, capacity of BESS, and the opening time. Obviously, the
first two factors are the most direct and key factors since the
size of PV and BESS directly determines the available energy
for the charging load as well as the cost. Due to PV system
only works in the daytime and it cannot work in the night.
If opening time is extended to the night, it will increase the
cost of buying electricity from grid. Hence the opening time
is also a key decision variable.

In this section, three objectives are used to quantify the
optimal charging station size. The first one is to minimize
the total economic cost. Total cost of an EVCS component
comprises 3 parts: capital investment cost CI , operating &
maintenance (O&M) cost CO&M , electricity cost CE from
purchasing the utility grid in the case that PV and BESS
cannot meet the charging load, so total cost can be expressed
as follows:

Ctotal = CI + CO&M + CE (5)

And both CI and CO&M are comprised with PV, BESS,
converters and inverters. Actually, it is difficult to obtain
the exact O&M information so the general method [18] is
assuming it possesses 10% of the investment cost.



Then total cost will be transformed into annualized total
present cost through the present worth factor (PWF ) [2]:

PWFr,N =
(1 + r)N − 1

r(1 + r)N
(6)

where the r is annual real interest rate (discount rate) equaling
to the nominal interest rate minus the inflation rate standing
the economics view [2]. And N is the EVCS project lifetime.

The daily cost DNPC can be expressed as follows:

J1 =
(Ctotal − S) ∗ PWF

365
−R (7)

where S is the salvage value, R is receive revenue from EV
owner.

The second criterion considered here is to quantify the
environmental impact where carbon emission is the main
factor. In the EVCS, carbon emission usually comes from
the power grid. And the objective function is to minimize
the amount of carbon emission which can be calculated as
follows:

J2 = aCEEt (8)

where aCE is the carbon emission factor, and in this paper it
equals 0.785 kgCO2/kWh.

Except the two above criteria, battery aging is the third one
considered in this paper because battery is still an expensive
device and will suffer the capacity degradation with time
going. Although the battery aging has been considered in a
simple rough estimated form of cost in the first objective
function, the accurate capacity degradation indic has been no
considered independently as an objective function in optimal
design of EVCS. In this work, degradation model of LiFe-
PO4 battery developed in [19] is introduced to quantitatively
calculate the capacity fade shown as follows.

Qloss = A exp (−Ea +B ∗ Crate

RTbat
)(Ah)z (9)

where Qloss is denoted the percentage of capacity loss, A
is the pre-exponential factor, Ea is the activation energy in
J ·mol−1, R is the gas constant, T is the absolute temperature,
Ah is the Ah-throughput, and z is power law factor.

J3 = Qloss (10)

So three objective functions above are built to explore trade-
offs between different objectives. We expect to find a solution
that is both cost effective, less polluting and less capacity
degradation. The decision variables and other associated pa-
rameters are presented in the following Table. Those related
price information of components are listed in the Table I
referring to literatures [2, 20].

And the optimal EVCS size decision model can be shown
as the following figure.

For those uncertainties, we use Monte Carlo simulation to
draw samples from their corresponding distribution model.
The Monte Carlo method is a mathematical-statistical pattern
for simulating the behaviour of uncertain parameters. Given
a significantly large sample size, this method can provide

TABLE I
DATA ON DECISION VARIABLES AND OTHER INFORMATION

System Option on size Price Source

PV 60,120,180,240,
300,360kW 7.5$/W [2]

BESS 150,300,450,600,
750,900kWh 500$/kWh [20]

Opening time
T1 (7:00-19:00),
T2 (7:00-24:00),
T3 (7:00-7:00 (next day))

- -

Inverter 500kW 1000$/kW [2]
Converter 50kW 1000$/kW [2]
Grid energy - 0.12$/kWh [2]
Charge service - 0.06 Estimated

Fig. 3. EVCS decision model

highly accurate results. And then the distribution of the output
attribute parameter can be obtained. The average output value
over large simulation under each decision variable will be used
to evaluate the performance and compare with other options
in the next section.

V. RESULT AND DISCUSSION

The decision variables are allocated with a series of discrete
value listed in Table I. Under each combination of the three
variables, Monte Carlo simulation should be conducted. More
simulation times are conducted, much more accurate the
result is while much more computational time is consumed.
Through simulation under a combination of decision variables,
the corresponding distributions of evaluation indices can be
obtained and also we can get the average values for each
evaluation criterion.

The multi-objective optimization will provide Pareto op-
timal set, which includes numerous optimal solution points.
For system cost, it is can be qualitatively deduced that the
system cost will go up along with the increasing size of PV
and BESS. On the contrary, the carbon emission generally
will decline since more proportion of contribution from PV
and BESS. However, the approximate linear relation is not
adapted to capacity fade of BESS which depends on the
matching with PV capacity. It can be proved by the simulation
result using the capacity fade model shown as Fig. 4. We can
observed that, under a fixed PV size, the capacity fade curve
basically decreases with the BESS size increases whereas it is



also affected by opening time span since longer time span
will consume more battery energy. Furthermore, from the
right detailed picture, it can be deduced that smaller size of
BESS suffers more capacity loss, reflecting the significance of
optimization of opening time duration.

Fig. 4. Capacity fade

Due to using different units of the 3 objectives, so the nor-
malized utility function is defined for each objective function
(Ji) as follows:

ui =
Ji − Jmin

i

Jmax
i − Jmin

i

(11)

where the Ji means the ith objective function.
And it is obvious that we want to minimize the ui and the

weight sum method is utilized to solve the multi objective
problem as follows.

U =

3∑
i=1

ui (12)

Therefore, under a certain fixed PV size value 120kW, we
can obtain the Pareto set and best trade off solutions for
optimal planning of EVCS is illustrated in Fig. 5. Likewise,
we can also generate other Pareto optimal set according to the
PV capacity.
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Fig. 5. 2D and 3D Pareto optimal sets and best tradeoffs in case for
PV=120kW.

Considering the shortage of MCS which can only obtain the
optimal solution among the given discrete determine variables,
if we want to find the most optimal solution combination,

numerous simulations and much narrow grid interval need be
performed, which means huge amount of computational time.
Genetic algorithm based multi objective function is used to
search the optimal set, and the result of one simulation is
shown as Fig. 6. The method obtains the optimal sizing of
the EVCS components over a specified number of simulations.
The optimal configuration of the EVCS ensures that minimum
system cost is met with minimum carbon emission amount and
minimum capacity fade of BESS.
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Fig. 6. 2D and 3D Pareto optimal sets and best tradeoffs using GA.

A compromise solution minimizes the normalized Euclidian
distance between the potential optimal points. We solve the
minimization

min

√√√√ 3∑
i=1

(ui − uorig)2 (13)

where the uorig is the original point after normalization.
The point solved by above method is marked by the red

square shape in the Fig. 6. To differentiate this point from
other Pareto optimal point, we denote this point as knee point.
Considering the stochastic characteristic, the stationary expec-
tation of knee points of many simulations will be regarded as
the final optimal value.

Fig. 7 shows the expected optimal values of the BESS
capacity, PV capacity and opening time duration. The con-
vergence state is almost reached after about 800 iterations.

Similarly, we can also get the knee point among the overall
points using the MCS method. To compare the effect and
results of two different methods, we list the corresponding
optimal combination of the 3 decision variables and the
optimal multi criteria value in the Tab. II.

VI. CONCLUSION

Recognizing the emerging need for planning EVCS to
satisfy the increasing charging demand from EVs, in this paper
a framework was proposed to optimize the size of EVCS
incorporating many uncertainties. This EVCS system was
composed of renewable (PV), BESS, grid-connected system,
and EVs, and hierarchical energy management strategy was
adopted for real-time application. To deal with the uncertain-
ties, MCS was implemented. GA multi-objective optimization
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Fig. 7. Expected optimal decision variables and results

TABLE II
OPTIMAL DECISION VARIABLES AND CRITERIA VALUE OF MCS AND GA

PV
/kW

BESS
/kWh

Opening
time/h

Cost-
Benefit/$

CE
/kg

Fade
(×10−5)

Optimal
value
by MCS

120 750 12 491.9 2773 5.3

Optimal
value
by GA

76.0 569.6 18.6 458.7 1630 4.6

technology was used to solve the multi-objective problem:
minimizing total cost, minimizing carbon emission and min-
imizing capacity degradation of BESS. And the preliminary
result showed that the capacity combination of PV with 76
kWp and BESS with 569.6 kWh could achieve optimal trade
off among the three objectives.

As this study involves many aspects and assumptions, and
both MCS and GA method require huge computation, to make
the simulation results more convincing, variation on electricity
price and sensitivity analysis will be conducted in the future.
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