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Abstract—This paper proposes a charging management of
electric vehicles (EVs) considering a charging anxiety behavior
of EVs. A charging anxiety term is included in the objective
function of EV which seeks to reduce its charging cost. This term
is represented by the EV’s parameters; capacity, state-of-charge,
charging power rate, demanded energy and departure time.
The charging anxiety can let the related EV shifts (if possible)
its charging time slots to others without deteriorating its own
changing cost to support other in-need EVs to charge. In such
a way, EVs may socially help each others in reducing their
charging costs. This is particularly important in cases of limited
available power for charging in the system. The EV charging
problem is treated as a generalized Nash equilibrium problem
and the solution is found based on receding horizon optimization
framework. Moreover, the solution is reached in a distributed
way by utilizing the consensus network. The simulation results
proof the effectiveness of the proposed distributed charging
management in reducing the charging cost of EVs.

Index Terms—Distributed charging management, electric
vehicle, charging anxiety, game theory, consensus network.

I. INTRODUCTION

The interest in renewable energy sources (RESs) and elec-
trification of transportation have been increased due to the
demand growth in energy and the environmental concerns.
Hence, electric vehicles (EVs) have received a notable at-
traction by industry and government. Up to 35 % of the
total vehicles in USA will be EVs by 2020 according to the
electric power research institute [1]. However, due to the low
capacity of the EV on-board battery, EVs have to be charged
constantly. With the potential large charging demand of an EV,
the overall load of EVs will increase the peak load of the power
distribution system at the charging site/station (CS). Thus,
uncontrolled EV charging can cause power flow fluctuations
and create harmful load peaks especially when overloading the
capacity of the charging facility system [2]. Considering the
previous issue with the charging cost reduction aim of EVs will
make the EV charging problem more challenging. Therefore,
it is necessary to develop an efficient charging management
to coordinate the charging behaviors of EVs. This charging
management is expected to improve the charging operation

efficiency and reduce the charging costs paid by EVs.
The EV charging problem to coordinate the charging sched-

ules of EVs has been vastly discussed in literature in both
centralized and decentralized control approaches. Ref. [3]
minimized the total charging costs in a time-of-use (ToU)
tariff through a centralized scheduling control. While Ref.
[4] proposed a centralized scheme that considered the plug-in
EV (PEV) route and ToU. However, here, the constraints in
the system were not properly considered. Ref. [5] presented a
collaborative energy management to fill the charging demands
of plug-in hybrid EVs (PHEVs) and to provide a balanced
network load. The objective was to optimize the power distri-
bution and reduce the operation costs.

In recent years, the decentralized control has received a
notable attention because it allows flexibility and scalability
as well as lowers the computation and communication burden.
Moreover, the decentralized control can protect the privacy
of the EV drivers since it allows reaching the solution with-
out revealing the private information. In Ref. [6], a bi-level
optimization problem introduced to model the fast charging
station and the EVs. The EV objective compromised between
benefits from charging and reserves provision. In Ref. [7]
the power distribution losses in PEV charging stations have
been minimized by an inverse leader-followers game to ensure
system reliability. The objective of PEV owner is set to
satisfy his/her charging demand with minimized cost. Ref. [8]
presented a decentralized cooperative charging approach to
reduce the charging cost of PEVs while considering the
limitations of charging PEVs and infrastructure. Ref. [9]
proposed a noncooperative game based distributed method for
charging PEVs in a distributed network. Though some papers
handled the overload in the system, the solutions during these
cases were simple and did not consider possible cooperations
between EVs. This is mainly because they treated the objective
functions of EVs to be formulated only in a self-interest way.

This paper introduces a distributed charging management
that reduces the charging cost of each EV. Unlike [9] and [10],
this paper tackles the cases of limited (insufficient) available
power for charging which is more challenging than the system
capacity and the demand curtailment request from utility.



Moreover, this proposed management allows a chance (if pos-
sible) for some EVs to assist in reducing the charging costs for
others without sacrificing their own charging costs. To this end,
a charging anxiety term is created and included in the objective
function of EV to make the decision on the availability and the
value of this assistance. The resulting decrement in charging
is called a social charging cost reduction.

II. SYSTEM MODEL

The EV charging system network here is considered to be
a charging station (CS) as an example. This CS consists of
a photovoltaic system (PVS), a battery energy storage system
(BESS), a base load system (BLS), a grid system (GS) and a
number of EVs N := {1, 2, . . . , N} for charging as illustrated
in Fig. 1. The PVS is modeled as in [11] while BESS is
modeled by its equivalent circuit model [12]. BESS is utilised
to buffer the power between surplus and intermittent periods
and mitigate the power and voltage fluctuations [13]. BLS
represents the base demand load (i.e., non-EV demand). GS
gives/receives power during the lack/extra generation periods
of PVS. Moreover, there is an EV aggregator that

1) Coordinates the charging of EVs over a multitime charg-
ing interval T := {1, 2, . . . , T}.

2) Announces the available power for charging EVs (pava,t).
3) Exchanges the shared data between the connected sys-

tems.
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Fig. 1. Structure of the example charging station

A. Available Charging Power Domain

The total available power for charging EVs at any time t is
calculated by

pava,t = ppv,t + pb,t − pl,t + pg,t, ∀t ∈ T , (1)

where ppv,t, pb,t, pl,t, and pg,t are the powers of PVS, BESS,
BLS, and GS. By considering the maximum loading capacity
Pmax
cs of the charging station, the following has to be held

pava,t ≤ ηcsPmax
cs , ∀t ∈ T , (2)

with ηcs(≤ 1) is the overload control threshold of the charging
station [14].

B. EV Charging Domain

Since this paper focuses on charging of EVs, the dynamic
charge of each EVn can be described by the linear model

SoCn,t+1 = SoCn,t +
ηc∆tpn,t
Cn

, (3)

where SoCn,t is the state of charge of the EV battery at time
t, ηc ∈ (0, 1] is the charging efficiency, pn,t is the battery
charging power, ∆t is the time step, and Cn is the battery
capacity.

Each EV arrives at the charging station at time T a
n with

initial energy Ei
n and needs to meet its demanded energy Ed

n

when it departures at time T d
n . Thus, the total requested energy

for charging in the interval T is Er
n,

Er
n = Ed

n − Ei
n = T

∑
t∈T

pn,t. (4)

If En,t (= SoCn,tCn) is the energy of EVn at time t, then,
the following has to be respected

SoCi
n ≤ SoCn,t ≤ SoCd

n, (5)

with SoCi
n (= Ei

n/Cn) is the state of charge of EV at the
arrival time to CS and SoCd

n (= Ed
n/Cn) is the state of charge

of EV at the departure time from CS.

C. EV Charging Problem

Each EV cares about minimizing its own charging cost
under its charging demands. Thus, the objective function of
each EVn can be represented as

min
pn,t

∑
t∈T

1

ϑn,t

(
1

2
Sn∆t2p2n,t + pet∆tpn,t

)
(6)

s.t.
∑
n∈N

pn,t ≤ pava,t, ∀t ∈ T (7)

Pmin
n ≤ pn,t ≤ Pmax

n , ∀t ∈ T (8)

In (6), Sn is the charging price sensitivity and prt is the
charging price. ϑn,t ∈ [0, 1] is the charging anxiety (CA)
that represents the degree of competing behavior of EV in
charging. The proposed CA can be written as follows,

ϑn,t =

1 Mn,t = 0

Cn(SoCd
n − SoCn,t)

P r
n(tdn − t)

Mn,t = 1.
(9)

Where the binary parameter Mn,t represents the social mode
of EVn at time t. When this parameter equals zero (i.e., RA
has the highest degree in competing for charging), it means the
corresponding EV has a pure selfish behavior and no ability
to help other EVs. The social mode is assumed to have the
zero value in the sufficient power cases since there is no
need for help in charging during these cases. While, having
a value of one (i.e., RA has a lower value than 1) means
the corresponding EV has a social behavior to support other
EVs in reducing their charging costs as will be seen later.
This scenario may be met in the insufficient power cases e.g.,
overload. Here, the corresponding EVn tries to decrease its
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Fig. 2. An example of the charging power of EVn when its social mode in
the overload period equals (a) Zero. (b) One.

charging power during the overload period and to increase its
charging power at other time slots under the same electricity
tariff to give a chance for other EVs to charge as illustrated in
Fig. 2. P r

n is the charging rate of the charging infrastructure.
Moreover, as shown in (9), the CA of EV increases meanwhile
the time approaches the departure time of EV. However, the
increase in the state-of-charge of EV will decrease its charging
anxiety. This trend is believed to follow the practical behavior
of EV in charging.

It is important to mention that (7) is the only common
constraint that couples the charging schedules of EVs. This
constraint makes the charging problem of EVs admits a
generalized Nash equilibrium problem (GNEP). Moreover, this
constraint reflects the insufficient power cases that can be
met in the system. Note that in practice (7) is satisfied at
the boundary to maintain the power balance in the system. It
should be noted that in this paper the insufficient power cases
and the overload cases are used interchangeably.

The lower bound Pmin
n and the upper bound Pmax

n of the
charging power of EVs are defined by the instantaneous power
constraint (8). Since this paper discusses a uni-directional
charging of EVs, the lower bound is set to zero. However,
it should be noted that the upper bound equals P r

n in times
when EV is plugged-in (i.e., In,t = 1) and zero otherwise,

Pmax
n =

{
P r
n In,t = 1

0 In,t = 0
(10)

The proposed solution of this EV charging problem is based
on a receding horizon optimization framework over horizon of
T time steps rather than a single time step. However, only
the first action of the optimal schedule will be applied at
the current time step. This optimization will be carried out
again in the following time step with a shifted horizon by
one time step but with updated realizations based on the
newly available information. It is worthy mentioning that the
charging station has a wide range of uncertainties such as
the weather conditions and the realization scenarios of the
EVs. This makes the proposed optimization framework quite
suitable here.

III. DISTRIBUTED CHARGING MANAGEMENT OF EVS

A. Optimality Conditions

Based on the Karush–Kuhn–Tucker (KKT) conditions of
optimality, the Lagrangian function for the aforementioned

optimization problem for each EV is given by

L =
∑
t∈T

1

ϑn,t

(
1

2
Sn∆t2p2n,t + pet∆tpn,t

)

−
∑
t∈T

λn,t

(∑
n∈N

pn,t − pava,t

)

+
∑
t∈T

µmin
n,t

(
Pmin
n − pn,t

)
+
∑
t∈T

µmax
n,t (pn,t − Pmax

n )

(11)

with λn,t, µmin
n,t , and µmax

n,t are the Lagrange multipliers of
EVn. Consequently, the first order optimality conditions are:

∂L

∂pn,t
=

1

ϑn

(
Sn∆t2pn + pr∆t

)
− λn + µmin

n

+µmax
n = 0, (12)

∂Li

∂λn,t
= λn

(∑
n∈N pn − pava

)
= 0, (13)

∂Li

∂µmin
n,t

= Pmin
n − pn ≤ 0, (14)

∂Li

∂µmax
n,t

= pn − Pmax
n ≤ 0. (15)

Where the bold style for each symbol represents the vector
values of this quantity over time T . Due to the concavity of
this problem i.e., concavity of the objective function along
with linear inequality constraints, both the existence and the
uniqueness of the GNE can be mathematically demonstrated.
Thus, KKT necessary conditions are sufficient. At the most
socially stable equilibrium, the optimal solution i.e., the Nash
equilibrium (NE), for each EV holds the following,

1

ϑn

(
Sn∆t2pn + pr∆t

) .
= λn, (16)

with pn has not violated its upper and lower bounds. Thus,
the optimal solution can be uniquely represented in terms of
λn as follows

pn = P
[
λnϑn − pr∆t

Sn∆t2

]
(17)

= arg min
Pmin

n ≤pn≤Pmax
n

∣∣∣∣∣∣∣∣pn − λnϑn − pr∆t

Sn∆t2

∣∣∣∣∣∣∣∣2 . (18)

Note that P [.] is a projection operator of the argument into the
feasible domain of EVn. As it can be seen, each EVn cares
only about its local parameters and constraints. Thus, reaching
the solution (i.e., λn) needs a collaboration between EVs
through exchanging their public information which motivates
the proposed distributed algorithm in this paper. From (17), it
can be clearly shown that at the optimal solution the bigger the
value of the charging anxiety of EVn, the bigger the assigned
charging power to it. This observation reflects the reason
behind allocating the charging anxiety term in the objective
function of EV.



B. Distributed Charging Management for Each EV

After assuming the privacy of each EV’s local parameter-
s, the centralized control methods are usually unavailable.
Moreover, after considering a large number of EVs in the
charging system network, the centralized approach is infea-
sible to gather all the information of EVs and to apply the
solution in the specified interval. So, the distributed charging
management is proposed. Here, the EVs in the system are
called agents/nodes. These nodes are connected together by
links to form a network system. Each node is assumed to have
an individual local controller. Each local controller accesses
only its local information, shares only its control variable
(λn), and interacts iteratively with other neighboring local
controllers. By this interaction-based method, the uniform
quantity λn which represents the global decision-making
value can be reached. To do so, the consensus network concept
is utilized [15]. Algorithm 1 shows the proposed consensus-
based distributed charging management (CDCM) for an EV
in the current time step that contains the following phases:

1) Initialization phase: The EV aggregator predicts the value
of pava over the horizon time T . While, the agent
EVn calculate (initialize here) its optimal solutions (pn
and λn). These results represent the ideal case i.e., no
violation on the common constraint (7) has been met yet
in any single time step over the horizon T .

2) Checking phase: The validation of the common constraint
will be checked for all time steps of the horizon T . The
algorithm terminates i.e., reaches the Nash equilibrium,
if the available charging power pava is sufficient i.e., no
overload is met, in any single time step. Otherwise, a
compromised solution is expected to be reached between
the agents i.e., EVs, through suppressing the charging
powers of EVs currently demanded to meet the constraint
as discussed in the next phase. It is worthy noting that
the EV aggregator is responsible to check the violation
of the common constraint.

3) Consensus phase: In each single time step, the followings
will be met. First, violating the common constraint will
be assigned to δpt i.e., another consensus variable, that
represents the power mismatch. This term is important
to bring the power balance back into the system i.e., (7)
is met at the boundary. Again, since the EV aggregator
is the coordinator in the network system that can access
all powers of EVs, it takes the task of this assignment
and broadcasts its current value δpit to all EVs. It should
be noted that i is the iteration index in reaching the
convergence. As known, the main purpose of this phase
is to converge all values of λn,t’s of the nodes in the
system to λt. For that, each node updates its current λin,t
utilizing the sum of the weighted differences between this
node’s λin,t and that of its neighbors’ λij,t’s as in line 9.
Moreover, the update of λin,t will be affected also by the
degree of violating the common constraint. Thus, the term
ηδpit is added, where, η is the step size. Note that Nn is
the neighbor’s set of node n, and wn,j is the connectivity

strength between node n and j that have to be chosen
in the range [0 1

Nn
] to ensure the intended convergence.

When this stage of convergence is achieved, the charging
power of EV with respecting to its local boundaries can
be calculated [refer to line 11]. However, to check if this
stage of convergence is the final desired one, a return [as
in line 13] to check the common constraint is applied. The
algorithm will iterate over the checking and the consensus
phases repeatedly until the common constraint in line 3
is met.

Algorithm 1 CDCM
I. Initialization Phase
1: Predict pava
2: Initialize λn, pn

II. Checking Phase
3: if

∣∣∑
n∈N pn − pava

∣∣ ≤ ε0 then
4: Terminate
5: end if

III. Consensus Phase
6: for ∀t ∈ T do
7: δpit =

∑
n∈N p

i
n,t − pava,t

8: while |λi+1
n,t − λin,t| > ε1 do

9: λi+1
n,t = λi

n,t +
∑

j∈Nn
wn,j(λ

i
j,t − λi

n,t) + ηδpit
10: end while

11: pi+1
n,t = P

[
λi+1
n,t ϑn,t − prt∆t

Sn∆t2

]
12: end for
13: Go back phase II

It should be noted that ε0 and ε1 are user defined values with
better resolution and more iterations to reach the convergence
at lower value.

IV. SIMULATION RESULTS AND ANALYSIS

The focus of this paper is on the charging powers and costs
of EVs with and without overload control and the system can
be designed as in [16]. Due to the page limitation, a small case
study is presented to show the effectiveness of the proposed
algorithm while the large scale case study in one day is left
for future extension. Thus, three EVs have been selected with
arrival and departure times listed in Table I.

TABLE I
ARRIVAL AND DEPARTURE TIMES OF EVS

Target EV EV1 EV2 EV3

Arrival time (min.) 1 100 50
Departure time (min.) 400 460 500

The capacity of these EVs is 19 (kWh) while their initial
and final SoCs are 0.2 and 0.9, respectively. The rated charging
power is considered to be (3.3 kW). The total available power
for charing (pava) is 2 (kW) in the period/slot (265-350 min)
and 8 (kW) otherwise. Note that other values (random in
general) will not change the effectiveness of the proposed
method. The electricity tariff is illustrated in Fig. 3 (a) [10].
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Fig. 3. (a) Electricity tariff (b) EVs’ power and SoC responses without
overload control.

The simulation results have been divided into three parts.
First, the EV charging problem is solved without considering
constraint (7) i.e., without overload control and the results are
shown in Fig. 3 (b). As it can be seen, all EVs have fully
utilised the low price slots (50-150 min) and (150-200 min)
and completed their charging requirements during the middle
price slot (250-500 min). Note that no EV is charging during
the high price periods (0-50 min) and (200-250 min). From
the SoC response, it is clear that the EVs meet their charging
requirements before their departure times. However, the total
charging power of EVs (

∑
p) is exceeded the limitation in two

periods i.e., (100-200 min) and (265-350 min), which have
been shaded in purple. The charging cost for each EV and
the total charging cost for them (EV1−3) under this case have
been shown in Table II.

Second, the EV charging problem is solved with handling
constraint (7) i.e., with overload control. However, here, the
presented control did not consider the charging anxiety i.e.,
without charging anxiety (its value one all time) [6], [9].
The results are shown in Fig. 4 (a) which admit the same
observations of that in Fig. 3 (b). Meanwhile, the total charging
power of EVs (

∑
p) always respects the total available power

for charging and does not exceed it especially during (100-200
min) and (265-350 min). Note that during these two periods,
the total available power for charging has been distributed
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Fig. 4. EVs’ power and SoC responses with overload control and (a) Without
charging anxiety (b) With charging anxiety.

evenly between the three EVs. This is because all EVs have
the same parametric objective function and their preferred
charging powers are bigger than the final evenly distributed
ones. By comparing this case with the previous one, EVs
lowered their charging powers during the constrained power
periods. However, they increased their charging powers in
other periods i.e., (200-250 min), (250-265 min), and (350-
500 min), to fulfill their charging requirements. Since the
increment in charging happened in higher price periods, it will
lead to an increment in the charging costs as shown in Table II.

Third, the EV charging problem is solved with handling
the constraint (7) and with considering the charging anxiety.
Thus, here the total charging power of EVs also did not exceed



TABLE II
CHARGING COST OF EVS

Target EV EV1 EV2 EV3 EV1−3

Without overload control ($) 1.743 1.904 1.743 5.390
Without charging anxiety ($) 1.867 2.004 1.784 5.655
With charging anxiety ($) 1.824 1.967 1.784 5.575
Social charging cost reduction($) 0.043 0.037 0 0.08

the total available power for charging as shown in Fig. 4 (b).
However, the charging powers of EVs during the restricted
power periods follow different strategies. In the period (100-
200 min), a restricted power is met but all EVs have high
charging anxiety (i.e., one) [refer to (9)]. Thus, similar to the
pervious case i.e., without charging anxiety, the total available
power for charging will be divided evenly between the three
EVs. However, in the period (265-350 min) not all the charging
anxieties of EVs have the value of one [again refer to (9)]. In
this case, the charging anxiety of EV3 is lower than one since
it has a late departure time (i.e., capacity to help). Accordingly,
EV3 can stop charging and give a change to EV1 and EV2.
Thus, this trend is called a social behavior of EV (i.e., EV3).
On the other hand, the charging anxieties of EV1 and EV2
are still one, thus, the power is distributed evenly between
them in the period (265-350 min). Note that EV3 compensates
its charging requirement by increasing its charging power at
different periods (250-265 min) and (350-500 min) but still at
the same electricity tariff. This means EV3 will not pay more
charging price due to its social behavior. On the other hand,
since both EV1 and EV2 have increased their charging power
in the middle price period (265-350 min), they can decrease
their charging power at the high price period (200-250) to full
fill their charging requirements. This change in charging EVs
will lower the charging cost of EV1 and EV2 as illustrated
in Table II. Consequently, the proposed method has made a
decrement in the charging cost (called social charging cost
reduction) for EV1 by 0.042 $ and for EV2 by 0.037 $ and
totally by 0.08 $ which listed also in Table II. It should be
noted that the social charging cost reduction can be higher with
longer times of the overload periods and different realizations
of EVs.

V. CONCLUSION

By nature, all EVs follow a selfish behavior in charging
to reduce their charging cost. However, it is still possible
for EVs to contribute in reducing the charging cost for other
EVs without deteriorating their own charging cost. Thus, in
this paper, a distributed charging management with charging
anxiety is proposed. This charging anxiety is included in the
objective function of EV to tune its behavior to give an ability
to EV to shift/reduce its charging demand to other time slots.
This term is connected to the EV’s physical parameters (ca-
pacity, state-of-charge and charging power rate) and demanded
parameters (required energy and departure time). The charging
problem then constructed as a generalized Nash equilibrium.
The solution of this problem is based on a receding horizon
optimization framework. This solution is then found in a

distributed way utilising the concept of the consensus network.
In simulation, three cases have been shown. The first did
not consider the overload in the system. While the second
took the overload into account but not the charging anxiety.
The third, took the overload and the charging anxiety and
showed an advantage in reducing the charging cost for EVs.
An extension to this work will show the improvement in a
large scale penetration of EVs and will investigate for possible
different charging anxiety trends.
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