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Abstract—This paper studies a game-theoretic energy man-
agement for hybrid electric vehicle (HEV), combining of engine-
generator, battery and ultracapacitor (UC). Each energy source
has different utility function with different preference. Here,
we use game-theoretic strategy to dispatch power because it
can represent different preferences for different components. In
addition, a game-theoretic strategy with velocity prediction (VP)
is proposed to improve the basic game-theoretic strategy, ie.,
game-theoretic management without velocity prediction. Here, a
recurrent neural network long short term memory (RNN-LSTM)
structure is implemented to predict future velocities. Since the
dataset of driving cycles has only one feature, velocity, two
different feature engineering methods are proposed to improve
the accuracy of VP. Next, Nash equilibrium of game-theoretic
management has been realized through the best response func-
tions and the performance of game-theoretic management has
been carried out. Finally, four criteria are used to quantify the
performance of the proposed energy management and that of the
game-theoretic management without VP. A comparative analysis
in simulation results validates that the proposed method gives
a better performance with less battery power variation, more
battery usage power, less engine-generator energy and more UC
average energy difference.

Index Terms—Velocity prediction, recurrent neural network
long short term memory , hybrid electric vehicle, game-theoretic
energy management.

I. INTRODUCTION

Due to energy crisis and global warming, pure electric
vehicles have been considered as a promising solution to
release the environmental issue [1]. Because of the limited
power density of battery, battery-ultracapacitor (UC) hybrid
energy system was proposed to protect battery [2], where UC
with high-power density works as an energy buffer. Besides,
because of the limited energy capacity of battery, the battery-
UC hybrid energy system can’t serve for a long-distance
trip and will cause driving range anxiety [3]. Thus, hybrid
electric vehicle (HEV), combining of engine-generator, battery
and UC, has been studied in recent years [4]–[6]. However,
due to the existence of three energy sources with different
charachteristics and demand fluctuation for driving dynamics,
it is necessary to design an energy management approach to
dispatch power.

Energy management strategies for multiple energy sources
have been proposed in HEV [7]–[10]. In a battery/UC hy-
brid energy system, a fuzzy logic-based energy management
strategy had been designed for controlling the state of charge
(SOC) of UC while smoothing the battery power profile [8].

Taking advantage of the characteristics of each device in
hybrid energy system, a game theory-based control strategy
was proposed in [9]. The energy management problem was
formulated as a Non-cooperative game and the existence of
Nash equilibrium was proved. Besides, a weight coefficients
tuning process was proposed to further improve the adaptive-
ness of the real-time energy management [10]. Although these
algorithms presented good performaces, they didn’t consider
the future information or velocity prediction (VP).

In terms of velocity prediction, many efforts have been
made. The future velocity profile of a vehicle is not only
determined by the present state of velocity, but also by the
traffic conditions, weather, and driving behaviors, etc. Combin-
ing historical velocity, traffic conditions, road information and
weather, big data based deep learning approach was a proper
solution to predict future velocity profile [11]. Based on big
data and neural network, a two-level data driven model was
proposed to accurately predict future velocity [12]. However, it
is difficult to get a large amount of data from various databases
[11], [12] and analyze them in real-time running of HEV. Some
authors treated the velocity prediction as a time series problem
and solved it through neural network [13]. Based on historical
velocities, the context-aware nonlinear autoregressive model
with exogenous inputs was used to predict velocity [13].

To the best knowledge of the authors, game theory and
velocity prediction have not been introduced in the literature
of HEV. Game theory has further applications to develop
optimal strategies with considering future information. Con-
sidering velocity prediction in the preferences of three energy
sources (engine-generator, battery, and UC) in HEV will give
a better performance. To this aim, a game-theoretic energy
management with velocity prediction in hybrid electric vehicle
is proposed in this paper. In this way, we can utilize the
decentralized control with the prediction benefits. Below are
the contribution points of this paper,

1) Comparing with basic game-theoretic management, a
game-theoretic management with velocity prediction is
proposed in hybrid electric vehicle.

2) Based on limited dataset, two feature engineering meth-
ods were proposed to improve the accuracy of velocity
prediction.

This paper is organised as follows. Section II describes the
system configuration, devices modeling. Velocity prediction



using recurrent neural network long short term memory (RNN-
LSTM) is implemented in section III. Construction of normal
form game of the HEV energy sources with their utility
functions are presented in section IV. A comparison analysis of
the game-theoretic energy management with/without velocity
prediction in simulation is presented in section V. Finally, the
conclusion is given in section VI.

II. SYSTEM CONFIGURATION AND MODELLING

A. System Configuration

As shown in Fig. 1, the system configuration consists of
velocity prediction and power distribution parts. In prediction
part, we used neural network to predict future velocities.
Current and future load demands can be attained through
longitudinal vehicle dynamics model. In power distribution,
the hybrid eletric vehicle system consists of engine-generator,
battery pack, UC pack and load. The engine-generator consists
of an engine, a three-phase AC generator, a rectifier for AC-
DC conversion and a DC-DC converter [9]. The battery and
UC are connected into system through their dc-dc converters.
The structure is a parallel-active topology, which can provide
more reliability and flexibility than other topologies [14]. The
battery and UC Powers can be controlled through tuning the
duty cycles of their DC-DC converters.

Fig. 1. System configuration.

B. Devices Modeling

As shown in Fig. 1, there are four devices in the system
including three energy sources (i.e., engine-generator, UC and
Battery) and longitudinal vehicle dynamics.

The engine-generator is modeled based on the engine
torque-speed map and generator efficiency map [9]. While,
battery and UC pack are modeled through their equivalent
circuits, as shown in Fig. 2. The equivalent circuit model
of battery consists of open circuit voltage (Uoc)), internal
resistance (rb) and two resistance networks (Rt,s, Ct,s and
Rt,m, Ct,m), as shown in Fig. 2(a). The equivalent circuit

model of UC pack consists of capacitance (C), internal resis-
tance (Rc,s) and leakage current modelling (Rc,p), as shown
in Fig. 2(b).

Uoc

rb

Rt,s Rt,m

Ct,s Ct,m

(a)

C
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Fig. 2. The equivalent circuit models of (a) Battery pack. (b) UC pack.

Through the longitudinal vehicle dynamics model, we can
calculate the power consumption (Load demand) of vehicle.
To calculate the power consumption under certain velocity,
acceleration and road condition, we consider a widely-used
model to represent the power demand for propelling the
vehicle. The longitudinal vehicle dynamics model is based
on the free body of the vehicle shown in Fig. 3, where
aerodynamic force (Faero), friction force (FTire), gravity force
(Fgrav = mg sin(θ)) and acceleration force (FTraction) are the
applied forces of the vehicle.

Fig. 3. Longitudinal vehicle dynamics model.

III. VELOCITY PREDICTION

Velocity prediction is a nonlinear problem with highly
dynamics so that we can’t type down an equation for it. Here,
we use neural network (NN) to predict the velocity since it can
be trained to learn a highly nonlinear input/output relationship
[15]. Since it is hard to get enough historical driving data,
weather information, traffic condition, road information, etc,
we decide to use typical driving cycles as dataset and treat it
as a time series [15]. A RNN-LSTM structure is well-suited
to predict time series because it can capture the long-term
dependency in time series [16]. Therefore, we use RNN-LSTM
structure to predict future velocity.

We first collect 18 typical driving cycles and build the
database, and then use neural network to predict future veloc-
ity. The time step for driving cycles is one second.The RNN-
LSTM has three layers: input, output and one hidden layer
in between. The hidden layer has 30 neural cells while the
number of neural cells in input and output layer are decided by



the dimension of the input sequence hi and prediction horizon
ho, respectively. Here, we define hi = 5ho. The input of
RNN-LSTM is historical sequence and the output is the future
velocity sequence. Each input-output pattern is composed of
a moving window of fixed length, which can be expressed as:

[vk+1, . . . , vk+ho ] = fNN (Γ k−hi+1, . . . , Γ k), (1)

where Γ k = vk means the velocity at time k, and fNN

represents the nonlinear map function of the RNN-LSTM.
Here, there is only one feature, velocity, in the input

sequence , which limits the prediction potential of RNN-
LSTM. Thus, we pay more attention to feature engineering
to improve the prediction accuracy.

A. Feature Engineering

Many features can be derived from historical velocity se-
quence and used to characterize the operating dynamic state
of the vehicle, such as acceleration, average speed and average
acceleration. Two feature engineering methods are introduced
to improve prediction accuracy.

1) First Method: We treat the prediction problem as a time-
series problem. Based on historical velocities, we can get
accelerations and the input Γ k = [vk, ak] becomes a vector
of velocity and acceleration (ak) at time k respectively. Each
input-output pattern as shown in Fig. 4(a). Since the hidden
layer has 30 neural cells and each input will go through LSTM
structure, then the hi inputs in this method have go through
30hi cells.

2) Second Method: In the second method, we treat the pre-
diction problem as a multi-series problem. Inputs are classified
into ho groups. Each group of inputs is corresponding to one
instant output, as shown in Fig. 4(b). Each group has hi

ho

instants input and go through 30 ∗ hi

ho
cells. Here, hi

ho
= 5

and it should be a positive integer.

Inputs =


[Γ k−hi+1, . . . , Γ k−hi+(N−1)ho+1],

[Γ k−hi+2, . . . , Γ k−hi+(N−1)ho+2],

. . .

[Γ k−hi+ho , . . . , Γ k].

(2)

(a) (b)

Fig. 4. Feature engineering of (a) First method. (b) Second method.

B. Performance of Velocity Prediction

Here, we compare the performance of the two feature
engineering methods which are described in previous section.
We choose NEDC and UDDS cycles as two testing sets, and
use three evaluation criteria to evaluate the performance.

1) Mean Absolute Error (MAE):

MAE =
1

T

T∑
t=1

|yt − y∗t | . (3)

2) Mean Absolute Percentage Error (MAPE):

MAPE =

T∑
t=1

|yt − y∗t |
yt

× 100%. (4)

3) Root Mean Square Error (RMSE):

RMSE =

√√√√ 1

T

T∑
t=1

(yt − y∗t )
2
. (5)

where yt is the actual velocity at time instant t, and y∗t is the
predicted velocity.

Fig. 5. Performance comparison in velocities prediction.

The performance comparison of two feature engineering
methods is shown in Fig. 5, where X axis is prediction horizon.
We observe that the accuracy of second method is better than
that of first method. Thus, we choose the second method
for feature engineering in velocity prediction. The velocity
prediction for NEDC and UDDS driving cycles are shown in
Fig. 6, where the prediction horizon is 6.

Fig. 6. Driving cycles.



IV. GAME-THEORETIC ENERGY MANAGEMENT

In this section, we introduce game theory as a mathematical
tool to solve the energy management in the HEV. Game-
theoretic energy management with/without velocity prediction
is proposed and can be solved using a normal form game
G = [3, (Pg, Pb, Pc), (Ug, Ub, Uc)]. The engine-generator, bat-
tery and UC pack are treated as selfish players and form an
Non-cooperative game. At each time instant, each player needs
to determine its strategy, i.e., the value of the corresponding
power (Pg, Pb, Pc). Appropriate utility functions for three
energy sources (Ug, Ub, Uc) have been defined, which can
quantify the degrees of preference across alternatives. Nash
equilibrium in game-theoretic energy management has been
solved through the best response functions.

A. Utility Functions

1) Engine-generator: wants to maximize its fuel economy.
Here, we define the utility function of engine-generator to
provide power as close as possible to the optimal power for
maximizing fuel economy. The utility function of engine-
generator is defined as follows.

Ug = 1− ng(Pg − P ∗
g )

2, (6)

where Pg is the power of engine-generator and P ∗
g is the

optimal power that maximizes fuel economy [10]. The ng is
a normalization factor [0,1] which can be defined as follows,

np =
1

(P ∗
g )

2
. (7)

Because the optimal power for maximizing fuel economy is
decided by the characteristics of engine-generator [17], the
utility function with velocity prediction is the same as that
without velocity prediction.

2) Battery Pack: wants to extend its cycle life, which can
be achieved by minimizing the amplitude and the variation of
battery power [18]. The two-objective function of battery pack
is defined as

Ub = wb1Ub1 + wb2Ub2, (8)

where wb1 and wb2 are weight coefficients, Ub1 and Ub2 are
the sub-utility functions for minimizing the amplitude and the
variation of battery power respectively.

First, to minimize the amplitude, the sub-utility function Ub1

is defined as,

Ub1 = 1− nb1(Pb − Pbave)
2, (9)

where Pb is the battery power, Pbave is the mean value of Pb

over a period of time and nb1 is a normalization factor [0,1]
which can be defined as follows,

nb1 = min

{
1

(Pbmax − Pbave)2
,

1

(Pbmin − Pbave)2

}
, (10)

where Pbmax and Pbmin are the maximum and minimum
values of Pb.

Without VP, the Pbave is the mean value of Pb from
beginning to current control instant. If considering VP, the

battery pack will minimize the amplitude with considering
future battery power. Thus, the Pbave is shown in Eq. (11-
13).

Pbave =


1
T

∑T
i=1 Pb(i), without V P,

∑T
i=1 Pb(i)+hoPbpre

T+ho
, with V P,

, (11)

Pbpre = λ

∑t+ho

i=t+1 Plpre(i)

ho
, (12)

λ =
1

ho

t∑
i=t−ho

Pb(i)

Pl(i)
, (13)

where t is the current control instant and T is the period
time from beginning to time t. ho is the prediction horizon
of VP. Pbpre is the mean value of future battery power over
horizon ho, determined by future load power Plpre. λ is the
ratio of battery power to load power Pl, which is calculated
by historical battery power and load power.

Second, to minimize the variation, the sub-utility function
Ub2 is defined as,

Ub2 = 1− nb2(Pb − Pblast)
2, (14)

where Pblast is the battery power in the last control instant
and nb2 is a normalization factor [0,1] which can be defined
as,

nb2 = min

{
1

(Pbmax − Pblast)2
,

1

(Pbmin − Pblast)2

}
. (15)

3) Ultracapacitor Pack: works as an energy buffer and
aims to maintain energy capability. Thus, we define the stored
energy be as close as possible to its initial state by assuming
the desired initial voltage as,

Vcini =

√
V 2
cmax + V 2

cmin

2
. (16)

The desired power can be formulated as,

P ∗
c = 2Pcmax ·

(
v2c − V 2

cini

V 2
cmax − V 2

cini

)
− Pcmax, (17)

where Vcmax and Vcmin are the upper and lower bounds of
the UC pack voltage, Pcmax is the maximum power of the
UC packand vc is the UC voltage.

The utility function of the UC pack is defined as,

Uc = 1− nc(Pc − P ∗
c )

2, (18)

where nc is the corresponding normalization factor.
Without VP, the vc in Eq.(17) is the UC voltage at current

control instant t, vc,t. If considering VP, it will be represented
as vc,pre, i.e.,

vc =

{
vc,t, without V P,

vc,pre, with V P,
(19)



4) Three Utility Functions: Pg, Pb, Pc must satisfy the
energy conservation law which is formulated as follows.

Pc = Pl − Pg − Pb. (20)

To combine this equality constraint with the utility functions,
we change three-players game into two-players game G =
[2, (Pgc, Pbc), (Ugc, Ubc)]. The utility function of UC pack
is added to the other two functions because the UC pack
is working as an assistive device in this system. The utility
functions of engine-generator Ugc and battery pack Ubc are
modified by adding several weights as follows,

Ugc = wgUg + wcgUc, (21)
Ubc = wb1Ub1 + wb2Ub2 + wcbUc. (22)

where these weights can been determined similar to [9].

B. Nash Equilibrium

As all of them want to maximize their own profits, the
Nash Equilibrium in game-theoretic energy management can
be obtained through the best response functions. The best
response functions are to choose the strategy to maximize
their own utilities given the strategies of the others are fixed,
which are obtained by taking the partial derivatives of utility
functions as follows,

∂Ugc

∂Pg
= 0,

∂Ubc

∂Pb
= 0. (23)

Solving the functions, we can get the power dispatch.This also
proves the existence and uniqueness of the pure strategy Nash
equilibrium of normal form game.

Pg =
2ngwgP

∗
g + 2ncwcg(Pl − Pb − P∗

c )

2ngwg + 2ncwcg

, (24)

Pb =
2nb1wb1Pbave + 2nb2wb2Pblast + 2ncwcb(Pl − Pg − P∗

c )

2nb1wb1 + 2nb2wb2 + 2ncwcb

. (25)

V. SIMULATION RESULTS AND ANALYSIS

The simulation is implemented under Python environment.
The time step is one second. Here, we first evaluate the
performance of velocity prediction, and then the performance
of the GTEM with/without VP.

A. Determination of Prediction Horizon

In this section, we define the best horizon for the velocity
prediction based on the overall performance of the proposed
game theoretic energy management with velocity prediction.
The overall criterion constructed from four criteria which
represent the performance of each player, as shown in Eq.(26).

P =
√
µ2
Eg + (1− µpb)2 + (σ2

pb)
2 + (1− µEc)2. (26)

where µpg is the average engine power, µpb is the average
battery power, σ2

pb is the variance of battery power and µEc

is the average energy difference between the energy stored in
the UC pack and the desired initial energy with the following

formulas.

µEg =
1

T

T∑
i=1

Pg(i), (27)

µpb =
1

T

T∑
i=1

Pb(i), (28)

σ2
pb =

1

T

T∑
i=1

(Pb(i)− µpb)
2, (29)

µEc =
1

T

T∑
i=1

∣∣∣∣12Cv2c (i)− 1

2
CV 2

cini

∣∣∣∣ . (30)

An offline simulation is carried out to decide the prediction
horizon ho. Here, we use historical driving profile to do
offline simulation, and then get their criteria for 10 prediction
horizons. We normalize each criterion, that is the range set
for each criterion is [0, 1]. Finally, use Eq.(26) to calculate
the overall performance for each prediction horizon. Since
the less engine power µEg , more average battery power µpb,
less variance of battery power σ2

pb and more UC average
energy difference µEc are preferred, the lower P value means
better the performance. From Fig. 7, we can see that P value
of energy management with prediction horizon 6 is lowest.
Therefore, prediction horizon ho = 6.

Fig. 7. Overall-performance comparison for different horizons.

B. Performance Comparison

We will compare the results represented by the four men-
tioned criteria for the two types of game, the GTEM without
VP (GT-NVP) and the proposed GTEM with VP (GT-VP).
Here, two driving cycles NEDC and UDDS are used for
testing.

The simulation results for NEDC driving cycle are shown in
Fig. 8. In the three sub-figures, green curves are the simulation
results for GT-NVP while the red curves for GT-VP. From
the second sub-figure, we can see that the battery power of
GT-VP is more smooth and steady that of GT-NVP, while
the comparison of other two sub-figures aren’t clearly. Thus,
we quantify the comparison of GT-NVP and GT-VP by four
preformance criteria, as summarized in Table. I. The variation
of battery power σpb of GT-VP is smaller than that of GT-NVP
and it has decreased 6.84%, i.e., more smooth and steady. The
average battery power µpb of GT-VP is larger than that of GT-
NVP, almost increase 8.21%, which means more battery power



was used in GT-VP. Besides, less engine-generator energy and
more average energy difference for UC pack are preferred. The
simulation results for UDDS driving cycle are also quantified
by four preformance criteria, as shown in Table. I. In sum, four
criteria of GT-VP are better that of GT-NVP in two testing
driving cycles. By that, our proposed game-theoretic energy
management with velocity prediction is better than game-
theoretic energy management without velocity prediction.

Fig. 8. Simulation results.

TABLE I
EVALUATION CRITERIA COMPARISON

Cycles Approach µpg µpb σpb µEc

(w) (w) (w2) (J)

NEDC
GT-NVP 35552 12.194 59.231 29409
GT-VP 35551 12.215 55.178 29451
Comparison −0.03‰ 8.21% −6.84% 0.143%

UDDS
GT-NVP 40731 12.570 55.496 30065
GT-VP 40731 12.619 54.659 30079
Comparison = 3.90‰ −1.51% 0.465‰

VI. CONCLUSION

In this paper, a game-theoretic energy management with
velocity prediction for hybrid electric vehicle is proposed
to dispatch power among three energy sources, ie., engine-
generator, battery and ultracapacitor. Here, based on 18 typical
driving cycles, we train a recurrent neural network long
short term memory structure to predict future velocity. Due
to the limited feature of the dataset, two different feature
engineering methods are used to improve the accuracy of
velocity prediction. Besides, three evaluation criteria are used
to evaluate the performance of velocity prediction. Moreover,
the game-theoretic energy management problem has been
solved through the best response functions and the existence of
Nash equilibrium has been proved. Finally, two testing driving
cycles, NEDC and UDDS are used to perform the online sim-
ulation and the performance of game-theoretic management

has been carried out. Four criteria are used to quantify the
performance of the proposed energy management and that of
the game-theoretic management without velocity prediction.
The comparative analysis in simulation results demonstrated
that the proposed method gives a better performance with
6.84% decrement of the battery power variation, 8.21% of
increment of the battery usage power, less engine-generator
energy and more UC average energy difference.
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