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Abstract—This paper studies a photovoltaic (PV) based elec-
tric vehicle charging station. It consists of multiple energy
components: PV panel, battery and transformer. There exist
uncertainties inside the system: stochastic charging behavior of
electric vehicles (EVs) and intermittent nature of PV power
generation, which present challenges to the design of entire
system components. In this paper, the EV charging demand
model is firstly developed. Then, the optimal components sizing
problem of the charging station is formulated to minimize
the entire system economic cost. In the problem formulation,
the introduced uncertainties are included and converted into
the reliability to guarantee. Then, the optimal size for each
component is obtained. Results show that equipping PV panel
facilitates the charging station to achieve lower economic cost
than that of without PV panel.

Index Terms—charging station, electric vehicle, optimal sizing,
uncertainties.

I. INTRODUCTION

Nowadays electric vehicles (EVs) are receiving increasing
attention from academia and industry due to zero emissions
and increasing driving range [1]. However, as the number
of electric vehicles increases, it is necessary to establish
charging infrastructure to meet the growing charging require-
ments. In order to meet more charging needs, building more
thermal power plants, which will consume more fossil fuels,
is unsustainable and harmful to the environment. Recently,
renewable energy development and energy storage systems
have made great progress and attracted great attention [2].
Therefore, charging station that integrates renewable energy,
energy storage and grid-connected devices are beneficial to
reduce the grid burden. However, as a result, charging station
contains many random factors (such as the random charging
behavior of electric vehicles and the uncertainty of renewable
energy source), and leads to complex structure, which together
challenge the energy management and design of charging
station.

Previous studies analyze different types of electric vehicle
charging station (EVCS), and they focus on the operation
of charging station. A game theory based EVs charing s-
trategy was proposed in [3], where the charging station can
dynamically adjust the electricity price to affect the charging
power of the EV group. However, renewable energy source
was not included in this studied charging station. A PV-grid

based workplace charging station was studied in [4], and
in the two energy source system it scheduled EVs charging
to maximize the use of solar energy as well as reduce the
impact on the power grid. Due to the intermittency of PV
power generation, battery is introduced in [5] to constitute a
PV-battery-grid based charging station, where a decentralized
energy management strategy was applied.

In addition to energy management, it is important to design
a suitable charging station size that is designed not only
to meet the EVs charging needs but also to minimize the
economic cost of construction and operation of the charging
station. [6] studied a charging station that included two types
of power supplies (flywheel energy storage and grid-connected
systems). This purpose of the paper is to obtain the optimal
energy storage (flywheel) size. To obtain the charging demand
profile, PHEV characteristics and the PHEV daily mileage
probabilistic property were considered. However, there is no
renewable energy resource in the charging station, and the
optimization of grid side was not considered. In [7], a more
complex charging station was studied, which included three
energy sources: PV, battery and grid. To address the optimal
battery size problem, it used a typical PV power generation
profile, fixed charging SOC range, EV type, and optimal EV
charging profile. However, PV power generation varies ran-
domly and depends on temperature and irradiance. And large-
scale EV charging will bring different amounts of uncertainty
in charging behavior, such as starting charging SOC, EV
battery capacity, starting charging time, and departure time.

Therefore, the two mentioned types of uncertainties must
be carefully considered in the charging station design. To
evaluate the impact of charging demand uncertainty on the
charging station, [8] directly utilized the collected charging
station load data. Therefore, the method is accurate, however
data collection work is expensive and susceptible to specific
charging stations. In addition, a variety of probability distribu-
tions can be used to characterize random variables. Literature
[6] used the survey results of NHTS traditional car daily
mileage probability distribution to estimate the daily mileage
of EV, and calculated the expected demand for charging as
an optimized input, which was also adopted by [9]. However,
the average method does not take the variation around the the
average into account.



In order to avoid the above problems, this study adopt-
ed a modeling method based on probability distribution for
charging demand and PV power generation. However, the
difference from the above literature is that after the Monte
Carlo simulation is used to obtain the distribution result of
the charging demand, in addition to the average value of the
charging demand, the variance information is also obtained.
And in the subsequent capacity optimization, the uncertainty
information is converted into reliability processing by the
power supplier and the demand side. Also, please note that
the charging demand depends not only on the EVs themselves.
As a charging service provider, charging station configurations
such as the number of charging stations and charging power
levels also have an impact, which will also be discussed in
this study. And the capacity of PV, battery and transformer
are also considered for optimization in the design of the
charging station, and the above paper only focuses on the
optimization of battery capacity. With the proposed method,
the optimal charging station size and the corresponding energy
management strategy can be obtained.

II. UNCERTAINTIES MODELLING

The configuration of the PV-battery-grid based EV charging
station is shown in Fig. 1. The EV charging power can be
supplied by a transformer, a mounted PV panel and a battery,
and the charging station can export electricity to the grid.
Charging station and EVs interact and restrict each other by
chargers. Inside the system, uncertainties come from PV power
generation and EV charging behavior, which are also the input
of sizing optimization of the charging station. Therefore, it is
necessary to model them first.

Fig. 1. Architecture of charging station.

A. Charging demand modeling

The EV charging demand profile has a great impact on the
operation and size of the charging station. In order to optimize
the size of each component of the charging station, it is
necessary to establish and analyze a charging demand model.
Since the actual charging demand is not deterministic, the fixed
constant charging demand profile cannot be directly applied
to the energy management and the calculation of the optimal
size of the charging station. To model the stochastic charging

demand, EV charging behavior (EV start charging time, energy
required for charging, initial charging SOC, daily charging
EV number) and charging station configuration (charging rate,
charging station) charging station number) are considered in
detail.

In addition, previous studies do not consider the aspect of
chargers and assume that the charging station can satisfy all
incoming EV charging demand without rejection, but in reality,
the number of chargers in charging station is finite. When the
number of arrival EVs is greater than the number of chargers,
there will be EVs to be rejected. Therefore, the charging
demand load of the charging station is a comprehensive result
of the EVs and the chargers, and it is necessary to consider
them in the model.

1) EV charging behavior: Since EV charging behavior is
highly random, a common method of establishing correlation
uncertainty is to use statistics and probability theory. Some
papers based on NHTS survey data to establish a probability
distribution model based on the daily use of vehicles [6]. In
addition, in [10], the number of PHEVs in a given hour in
the charging station and the uncertainty of the initial SOC
of the PHEV battery are simulated using a normal distribution
function. Similarly, this paper models the relevant EV charging
random variables according to the probability distribution
model. First, it is assumed that in this study the start charging
SOC of EV ranges from 0.2 to 0.5, and it obeys a Gaussian
distribution, which can be expressed as follows:

f(SOCini) =
1

σ
√

2π
e−

(SOCini−µ)
2

2σ2 , (1)

where mean value µ =0.35 and standard variance σ = 0.075,
and the setting method refers to [11].

Second, you need to determine the start charging time of the
EV. The EV start charging time is related to the time the driver
arrives at the charging station, and it is assumed that the driver
is charged immediately upon arrival. Here, EVCS is supposed
to be open during the day to provide charging services to the
public, as people usually drive to the workplace during the day
and go home in the afternoon. The start charging time can then
be modeled as a Gaussian distribution shown as follows:

f(tini) =
1

σ
√

2π
e
− (tini−µt)

2

2σ2t . (2)

This distribution is defined by two parameters: the average
arrival time µt and the standard variance σt.

The EV battery capacities on the market are various.
According to [12] and market product survey, most battery
capacities range from 16 kWh to 80 kWh. Therefore, the
arriving EV battery capacity is randomly distributed, according
to the Gaussian distribution (µc and σc) as follows:

f(c) =
1

σ
√

2π
e
− (c−µc)2

2σ2c . (3)



Similarly, the number of EVs that are charged every day is
also random, so it is also modeled as a Gaussian distribution
(µn and σn):

f(n) =
1

σ
√

2π
e
− (n−µn)2

2σ2n . (4)

2) Charging Station Configuration: Configuration of charg-
ing station will affect the charging demand in two ways:
the number of chargers and the charging power. In the case
where many EVs come to the charging station for charging but
the number of chargers is finite, if the number of upcoming
EVs is greater than the number of unoccupied chargers, this
will definitely cause some EVs to be rejected. Therefore, a
mechanism needs to be devised to determine which EV will be
rejected. To solve the problem, a queueing model for arriving
at the EV is established. In the queuing model, all EVs are
sorted and labeled in order, and if the number of EVs present
at the same time is greater than the number of available
chargers, the EVs that follow will automatically leave and go
to the next charging station. In this algorithm, the arriving
EV will access the available charger at each time according
to the given charger serial number until it finds an empty
charger. Otherwise, this EV will be rejected. Regarding the
charging power, since the charging rate is determined by the
charging power of the charger, the higher charging power can
shorten the charging period while increasing the charging load.
According to the charging standard SAE J1772, three current
charging levels are currently used for electric vehicles. Class
1 works at 120 VAC, 1.4 kW, Class 2 operates at 208 or 240
VAC, 7.2 kW, and Class 3 operates at 200 to 450 VDC, with
maximum 200 kW. EVs are usually equipped with an onboard
level 1 charger, and level 2 and level 3 chargers are usually
equipped at the charging station.

Once the relevant random number: start charging SOC, start
charging time, EV battery capacity, number of arriving EVs,
and charging station configuration: the number of chargers and
the charge level are all fully determined, then the EVCS total
charge demand load at each moment can be calculated by:

Pevcs(k) =

m∑
c=1

Pcharger,c(t), (5)

where k represents the time instant, c represents the cth
charger, Pevcs is the total charging demand load of EVCS, and
Pcharger,c represents the charging power of the cth charger.

To show the effect of the proposed charging demand
modeling method, it is assumed that one EVCS is equipped
with four chargers with a charging power of 40 kW, and the
daily charging demand of the EVCS generated by a random
simulation is shown in Fig.2. Then Monte Carlo simulation
can be applied to repeat the sampling from the probability
distributions of these related random variables to obtain the
distribution of charging demand.

Fig. 2. One year power generation profile of a PV unit

B. PV power generation

The output power generation of the PV panels can be
evaluated by the following equation [13]:

Ppv = GiApvηpv, (6)

where Gi is the global solar irradiance, Apv is the installed PV
surface, and η is the conversion efficiency of the PV system.
The area of the PV unit used in this study is 1.46 m2, and
the conversion efficiency is 17%. The output power under the
clear-sky model is shown in Fig.3. Overall it can be seen the

Fig. 3. One year power generation profile of a PV unit.

PV output power is uncertain, which is related to the season
and the time of day. In summer, the power generation is the
highest, and the power generation time is longer than other
time periods.

III. COMPONENTS SIZE OPTIMIZATION

From the point of view of the charging station owner,
the planning of the charging station needs to consider the
minimization of the economic costs including investment costs
and operation costs. In this study, the charging station is
composed of multiple energy sources, so the investment cost



should be fully considered in relation to solar panel size,
battery storage size and transformer size. The operation costs
primarily include electricity purchase costs from the main grid,
which relates to the energy management strategy. Therefore,
the optimal sizing problem combined with optimal economic
energy management strategy can be formulated as follows:

min cs · s+ cb · b+ cts · ts+

N∑
k=1

cg(k) · PG(k), (7)

where cs represents the unit cost of solar panel in USD/kW,
cb denotes the unit cost of battery in USD/kWh, cts means
the unit cost of solar panel in USD/kW, cg(k) represents the
electricity tariff at time instant k, and G(k), s, b, ts are
optimization variables and their meaning are electric power
at time instant k, PV panel size, battery size and transform
size, respectively.

In the charging station, power balance should be always
guaranteed at any time instant which is expressed by:

s · Ppv(k) + Pbat(k) + Pg(k) = Pl(k), (8)

where Ppv(k),Pbat(k),Pg(k) and Pl,k are the generation power
of PV panels, the the power from battery, the electric power
from main grid, and the charging demand load from EVs at
time instant k, respectively.

The battery energy dynamics can be determined by the
following model:

Ebat(k + 1) = Ebat(k)− (Pbat(k) + η|Pbat(k)|)∆t, (9)

Ebat,0 = Ebat,ini, (10)

where Ebat(k) indicates the battery energy state at time k and
Ebat,ini is the initial energy. Battery power Pbat(k) value can
be either negative (charging) or positive (namely discharging).
η is the lost efficiency of battery, which is assumed constant
since lithium-ion battery is characterised by high efficiency. In
addition, the battery power Pbat(k) and Ebat(k) are limited
by the following inequality constraints

Ebat,min ≤ Ebat(k) ≤ Ebat,max, (11)

Pbat,min ≤ Pbat(k) ≤ Pbat,max, (12)

where Ebat,min and Ebat,max are the minimum and maximum
energy levels, here we separately set the limits by 20% and
95% of the nominal energy and this range is beneficial for
battery to maintain stable voltage. Pbat,min and Pbat,max

are the permitted maximum charging power and maximum
discharge power.

The grid power cannot exceed the maximum power of
transformer:

Pg,min ≤ Pg(k) ≤ Pg,max, (13)

where Pg,min and Pg,max are the maximum allowable export
power and maximum import power. In this study, the charging
station is allowed to provide power to the main grid.

In addition, the design variables: PV panel size, battery size
and transformer size are subject to:

smin ≤ s ≤ smax, (14)

bmin ≤ b ≤ bmax, (15)

tsmin ≤ ts ≤ tsmax. (16)

For the objective function (7) of the optimization problem,
the optimization variables s, b and ts are limited to integer,
then the problem becomes a mixed integer linear programming
problem (MILP).

However, in Equ. (8), the charge demand load Pl and the
PV power generation Ppv are uncertain quantities. Therefore,
the optimization problem becomes to optimize the component
size while scheduling the system power flow under uncertainty.
Based on the proposed charging demand modeling method of
EVCS, and using Monte Carlo simulation to simulate a certain
number of times, after the statistical probability analysis, the
generated charging demand load Pl(k) can be expressed by a
Gaussian distribution:

Pl ∼ N(P l(k), σ2
Pl

(k)), (17)

where P l(k) is the mean value of charging demand load and
σ2
Pl

(k) is the variance.
For example, if the finite number of chargers is 20 and

the charging power of charger is Level 2. And the mentioned
uncertainty quantities are sampled from their specified distri-
butions. The charging end condition is when the SOC of each
EV reaches 95%. After 200 Monte Carlo simulations, it means
that there are 200 data points at each time instant, and then
their distribution is described by a Gaussian distribution with
(P l(k),σ2

Pl
(k)). Those parameter value at each time instant are

shown in Fig. 4 (a).

Fig. 4. Gaussian distribution parameter at each time instant: (a) Charging
demand, (b) PV power.

Likewise, the PV module power generation data can also
be treated as:

Ppv ∼ N(P pv(k), σ2
pv(k)), (18)



where P pv(k) is the mean value of PV generation power and
σ2
Pl

(k) is the variance. The calculated parameter is shown as
Fig. 4 (b).

Once the uncertainties are determined, then the right in-
equality of constraint (13), namely the upper bound, can be
converted into chance constraint:

Pr(Pl(k)− s · Ppv(k) ≤ Pbat(k) + Pg,max) ≥ α, (19)

where α is a constant parameter meaning reliability. The
higher the α value, the higher the reliability that the system
can guarantee.

The normal CDF can be obtained by converting the chance
constraint shown as follows:

Φ(
−Pl(k) + s · Ppv(k) + Pbat(k) + Pg,max

σ2
Pl

(k) + s2σ2
Ppv

(k)
) ≥ α. (20)

Then the upper bound constraint can be rewritten as:√
σ2
Ppv

(k) · s2 + σ2
Pl

(k) ≤ 1

Φ−1(α)
(s · Ppv(k) + Pbat(k)

− Pl(k) + Pg,max).
(21)

And the lower bound constraint is rearranged as:√
σ2
Ppv

(k) · s2 + σ2
Pl

(k) ≤ 1

Φ−1(α)
(−s · Ppv(k)− Pbat(k)

+ Pl(k) + Pg,max).
(22)

Because the two above inequalities form a second order
cone constraints, the original size optimization problem is
transformed into a second order cone program problem, which
actually is convex. So convex optimization tool can be used to
solve it and the advantage of convex problem is the solution
of the problem can be guaranteed to be existence and unique.

IV. RESULTS AND ANALYSIS

This section will present the optimal size results of the three
components through the proposed method, and analyze the
effects of different parameters on the results.

Technical parameters used in the simulation are summarized
in the Table. I.

TABLE I
TECHNICAL PARAMETERS USED IN THE SIMULATION.

Parameter Value Unit

PV cost 500 USD/kW
Battery cost 400 USD/kWh
Transformer cost 1000 USD/kW
PV design life 10 Year
Battery design life 5 Year
Transformer design life 10 Year
Battery module energy 200 kWh
Battery module permitted power 200 kW
Reliability coefficient 0.9 NAN
PV size range 0-1200 Unit
Battery size range 0-4 Module
Battery SOC range 0.1-0.9 NAN
Transformer size range 0-200 kW

Using the uncertainties’ simulation results as shown in Fig.4
and incorporate them into the optimization method, the optimal
components size can be solved. The optimal results of the
sizes of those components are: 3 battery modules (600 kWh),
1200 PV units (300kW) and the transformer with 200 kW,
respectively. Meanwhile, the optimization results can provide
the optimal system power flow shown in Fig. 5. A time of
use electricity tariff is used in the simulation, which includes
the peak hour, middle peak hour and off-peak hour periods.
It can be found that when the charging station charges EVs
from 5 am, at this early stage, since the PV power generation
amount is less than the charging demand, the PV, the battery
and the main power grid together provide charging power
for the EV. As PV power generation increases, the battery
absorbs additional PV power generation, while the remaining
power is fed back to the grid. During the peak hours from
3 pm to 8 pm, the charging station releases energy from the
battery to arbitrage. The battery is then recharged to the initial
SOC at the end of the day. Through a day’s operation, the
optimal cumulative cost is -0.012 USD, which means that
the charging station can even make a profit according to this
energy management strategy.

Fig. 5. Power flow in the charging station.

Some studies have focused on the economic benefits of
deploying energy storage systems, and most of their systems
do not involve renewable generators. The component size
optimization results for charging stations without PV power
generation are: 4 battery modules (800 kWh) and 200 kW
transformers. Its optimal power flow is shown in Fig. 6.
However, the optimal cost is 238.43 USD, which is much
higher than the results including PV systems. It demonstrates
the significance of taking all of components into account in
the design of the charging station.

V. CONCLUSION

In this paper the optimal components’ sizing of an electric
vehicle charging station is solved, which consists of the PV

ydx
高亮

ydx
高亮

ydx
高亮



Fig. 6. Power flow in the charging station without PV system.

array, the battery, and the transformer. Considering the size of
charging station can be greatly affected by the EV charging
demand, the EV charging demand model is established before
formulating the optimization problem. To address the problem
that the charging demand is not deterministic, several related
uncertain quantities are involved: EV starting charging time,
start charging SOC, EV battery capacity and the number
of arriving EVs, which are modeled according to their as-
sumed probability distribution function. The charging demand
stochastic is obtained through Monte Carlo simulation. Then,
the sizing optimization problem is formulated to minimize the
investment cost and operation cost, and the uncertainties are
included in the problem. The solved results show a preference
for large PV array and transformer size. While for the case
that does not equipped with PV array, the final system cost
is higher than that of including PV system, which indicates
equipping the PV array can effectively reduce the cost of the
charging station.

In the future work, the number of chargers will also be con-
sidered to optimize, and the impacts of other parameters such
as different electricity tariff, charging pattern, and different
component costs, will be deeply studied.
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