
THE UNIVERSITY OF TOKYO 

1 

Fractional Order Control and Its 
Applications in Motion Control 

Chengbin Ma 

(馬 澄斌) 

D3(October), Hori Laboratory 

 

 

The Department of Electrical Engineering 

July 26th 2004 



THE UNIVERSITY OF TOKYO 

2 

Outline 

 Brief Review 

My Contributions 

 Conclusions & Future Works  

 Publications 



THE UNIVERSITY OF TOKYO 

3 

Section 1 

 Brief Review 
 What is FOC? 

 When did FOC begin? 

 Why need FOC? 

 My Contributions 

 Conclusions & future works 

 Publications 



THE UNIVERSITY OF TOKYO 

4 

What is “Fractional” 

 Models and/or controllers described by 
fractional order differential equations. 

 Fractional order modeling: 

 

 

 Fractional PID controller: 
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Mathematic definitions 
 Riemann-Liouville Definition: 

 

 

 

 Grünwald-Letnikov Definition: 

 

 

 

 Fractional order of s means fractional order calculus. 
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Fractional order systems have an 
unlimited memory (infinite 
dimension) 
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Mathematical presentations 

 Fractional differential equation: 
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 Fractional transfer function: 
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Frequency response 

 Sinusoidal input 
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For FOC system with transfer 
function: M(j) 

Using an asymptotic 
expansion of the incomplete 
gamma function 
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Example of time responses 

Open-loop 1/s^ system Unity feedback 1/s^ system 

 Basically interpolation, but still quite different. 
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Example of frequency 
responses 

 Perfect interpolation, both in magnitude 
and phase. 

Open-loop 1/s^ system 
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History of 300 years 

 Leibnitz  introduced the notation dny/dxn. A letter to L’Hospital in 1695 

Leibnitz raised the following question:  

 Can the meaning of derivatives with integer order dny(x)/dxn be 

generalized to derivatives with non-integer orders? 

 

     The story goes that L’Hospital was somewhat curious about that 

question and replied by another question to Leibnitz: 

 What is n=1/2?  

 

 Leibnitz in a letter dated September 30, 1695 replied:  

 It will lead to a paradox, from which one day useful consequences 

will be drawn. 
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“New” research with long 
history 

 Fractional Order Control (FOC) was 
introduced by Tustin for the position control 
of massive objects half a century ago in 1958. 
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Robust against gain variation 

Without saturation With saturation 

 =0.6, namely 1/s^1.4 system, has the best   
    robustness against saturation non-linearity 
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Main obstacles in the past 

 FOC was not widely incorporated into 
control engineering mainly due to: 

 The unfamiliarity of taking fractional order 

 The existence of so few physical 
applications 

 The limited computational power available 
at that time. 
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Resurging interest 

 Fractional order differential equations could 
describe dynamic processes more adequately. 

 Fractional dynamic systems need fractional 
order controllers for more effective control. 

 Computational power’s progress also makes 
modeling and realization of FOC systems 
much easier. 

 FOC can achieve clear-cut design of robust 
control systems. 
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International community 
 The researches on FOC are centered in European 

universities.  

 France CRONE （Controle Robuste d’Ordre Non-Entier） 
team, Denis Matignon, Ivo Petras, Igor Podlubny, J. A. 
Tenreiro Machado, Yangquan Chen, etc. 

 1st ASME Symposium on Fractional Derivatives and 
Their Applications (FDTA) was held in last year’s ASME 
Chicago conference.  

 1st IFAC Workshop on Fractional Differentiation and 
its Applications (FDA’04) was held last week  in 
Bordeaux, France. 
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ASME Chicago symposium 

 29 papers concerning FDTA in automatic 
control, automatic control and system, 
robotics and dynamic systems, analysis tools 
and numerical methods, modeling, visco-
elasticity and thermal systems were 
presented in the symposium.  

 A sub-committee called “Fractional Dynamic 
Systems” under ASME “Multi-body Systems 
and Nonlinear Dynamics” committee was also 
formed during the symposium. 
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IFAC Bordeaux workshop 

 16 sections:  
 Material Modeling 

 Physical and Biological 
Systems Modeling 

 Material Tools, Control 

 System Identification 

 Software for Fractional 
Systems 

 Applications in Econophysics 

 Technological Transfers 

 Implementation/Discretisation 
of Fractional Operators 

 Thermal and Fluid Systems 
Modeling 

 Applications in Electrical 
Engineering 

 Anomalous transport/Random 
walks 

 Applications in Control, 
Robotics and Mechatronics 

 Fractional Diffusion Equations 
and Their Applications 

 Fractional Systems Analysis 

 Numerical methods for 
Fractional Systems 
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Impressive presentations in 
IFAC Bordeaux workshop 
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Impressive presentations in 
IFAC Bordeaux workshop 
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Impressive presentations in 
IFAC Bordeaux workshop 

0 0.5 1 1.5
0

50

100

150

200

 F
or

ce
 (

en
 c

en
tin

ew
to

n)

(50 Hz t=10 min)

7634.731.22²

10.43.14573
66.033.1

5






ppp

p

U

Y

Identification of the  
rabbit muscle behavior 

Bio-Control with FOC? 



THE UNIVERSITY OF TOKYO 

22 

Section 1 

 Brief Review 
 What is FOC? 

 When did FOC begin? 

 Why need FOC? 

 My Contributions 

 Conclusions & future works 

 Publications 



THE UNIVERSITY OF TOKYO 

23 

Three main advantages 

 Natural modeling of control 
plant’s dynamic features 

 Clear-cut and effective robust 
control design 

 Reasonable realization by  
proper approximation 
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Basic attitude 

 Responsibility of pioneer: FOC is still in a primitive stage. AS 
a FOC pioneer (maybe), I want to establish a good basis for 
future FOC researches. 

 

 FOC should be an engineering research: The mathematics 
of FOC can be extremely difficult. However, as an engineering 
student, I should not be restricted by difficult mathematics, but 
try to  apply FOC from engineering view.  

 

 FOC should be useful: Like all the other researches, the FOC 
research is also inevitably a team work. Superior application 
results will absorb excellent researchers into FOC field. 
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More natural modeling 

 The fractional order model can provide a new possibility to 
acquire more adequate modeling of dynamic processes.  

 

 Fractional order models have been applied to describe re-
heating furnace, visco-elasticity, chemical processes and Chaos 
system, etc. 

 

 Using fractional order model for describing distributed-
parameter systems is quite natural since the Laplace transform 
of partial differential equations will inevitably introduce 
fractional order s operator. 
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An example of fractional  
order modeling 
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Stable pole for N(s) system 

 Characteristic equation: 

 1
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Nyquist stability criterion 

 Take unity-feedback 1/s^ as an example: 

Frequency responses Time responses 
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Impact of s 
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Smooth transition 
 Good control performance: 

large loop gain in low-
frequency range 

 

 Good robustness: small loop 
gain in high-frequency 

 

 A smooth transition is 
important to design control 
system, which is neither too 
conservative (too large stability 
margin) nor too aggressive (too 
small stability margin). 
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Desirable stability margin 

 Unity-feedback system ( ) , 4
( 1) ( 2)
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Robust stability 
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Riemman-Liouville definition 
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Scaled integral 

 Based on the trapezoidal integration rule: 
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Derivative of scaled integral 

 Riemman-Liouville definition: 
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Control strategy 

 Apply strong control action to latest sampled inputs: 

 

 

 The rapidly fading influences of the old values and 
dominance of the latest ones make FOC “ passively 
adaptive” to the present changes of dynamic 
processes. 
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Realization by scaled  
sampling time 

 Memorize the behavior of x(t) only 
in “recent past”: 

 

 

 Therefore: 

 

 
 integral controllers D-α: 
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An example 

 Fractional order D^a controllers are realized by 
sampling time scaling method, in which whole past 
values will be remembered. 

 The integer order D controller is discretized by the 
backward-difference rule: 

One-mass position control loop 
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Time responses 
Without saturation With saturation 
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Close-loop frequency responses 

D0 D D1 

D0 D D1 

Resonant peak large intermediate small 

Bandwidth BW small intermediate large 

Change of BW small intermediate large 

Cut-off rate large intermediate small 
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Various methods 

 Since the fractional order systems have infinite 
dimension, proper approximation by finite differential 
or difference equation must be introduced. 

 

 For broken-line approximation, further 
discretization is needed.  

 

 Three direct discretization approaches: Short 
Memory Principle, Tustin Taylor Expansion, 
Lagrange Function Interpolation. 
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Frequency-domain approach 

Nice approximation 
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Short memory principle 

Grünwald-Letnikov Definition 
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Tustin Taylor expansion 

 Taylor expansion of fractional k order 

well-known Tustin operator: 

 

 

 

 For implementation, truncation is 
needed: 
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Lagrange function interpolation 

 Quadratic Lagrange interpolation 
between x(k-2), x(k-1) and x(k): 

 

 

 k order derivative of tn: 

 For t=2T, the z-transformation is: 

2
( ) 2 ( 1) ( 2) ( ) 4 ( 1) 3 ( 2)

( )
2 2

( 2)

x k x k x k t x k x k x k t
x t

T T

x k

        
  

 

 

0

!
( )

( 1)

n k
k n

t

n t
D t

n k




  

1 2 21 1
( ) (2 ) 4

2 (3 )

k

k k
Z s k kz k z

T k

       



THE UNIVERSITY OF TOKYO 

52 

SMP best 

0.001

0.01

0.001sec

m

d

s

J

K

T







 Tustin Taylor expansion and Lagrange function 
interpolation are not reliable. 

 Sampling time scaling and short memory principle 
have similar performances. 

 Short memory principle method is most practically 
superior due to its simple algorithm. Take memory 
length 100 should give good approximation. In real 
application, 10 is also acceptable. 
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Examples for SMP and STS 

0.4 -1 -2 -3 -4 -5

SMP

-6 -7 -8 -9

0.4 -1 -2

STS

Z {s } = 15.8489 - 6.3396z  - 1.9019z  - 1.0143z  - 0.6593z  - 0.4747z

                    - 0.3639z  - 0.2912z  - 0.2402z  - 0.2028z

Z {s } = 8.8689 + 4.5738z   - 5.1664z  - 1.3436 -3 -4 -5

-6 -7 -8 -9

z  - 0.7834z  - 0.5373z

                   - 0.4008z  - 0.3150z  - 0.2567z  - 0.2149z

 The 10 latest sampled inputs are memorized. The approximated 
fractional order controllers can be easily realized by computer 
program. 

 In sampling time scaling method, gamma function (x) needs to 
be calculated. The short memory principle’s algorithm is much 
easier. Only the four basic operations of arithmetic are needed. 
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Section 2 

 Brief Review 

 My Contributions 
 Basic attitude 

 Fractional order modeling 

 Stability determination 

 Effective gain-phase tradeoff 

 Sampling time scaling property 

 Realization issues 

 Applications 

 Conclusions & future works 

 Publications 
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The experimental setup 
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Three-mass Model 
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Fractional order PID controller 
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Point to plane 

pC(s)=K i
d
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
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More effective and predictable 

adjust Kp adjust Ki adjust Kd 

adjust  adjust  
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My practices on PID control 

 I controller for one-mass robust speed 
control (ASME paper) 

 PID controller for two-mass robust 
speed control (IPEMC paper) 

 PID controller for the vibration 
suppression control of torsional system 
(IEEJ and ACC papers) 
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Integer order PID controller 

 Design PID controller with simplified two-mass model 
which neglects the backlash between gears. 

 

Simulation results Setpoint-I PID controller 
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Introduce fractional D 

 Open-loop Bode plot with three-mass model 

=0.7 

=1 =0.85 

=0.5 
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Tradeoff exists 

 Tradeoff between gain margin loss and 
backlash vibration suppression strength exists. 

Gain margin vs  Open-loop Bode plots 

Stability Vibration suppression 



THE UNIVERSITY OF TOKYO 

64 

Discrete realization 

 For comparison, SMP and  STS are both 
introduced. Memorizing 10 past values should 
be reasonable. 

Short memory principle Sampling time scaling 

D0.5 D0.5 
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Experiment: PID control 

 Severe backlash vibration occurs, consistent with 
the analysis. PID control system is unstable. 

No backlash With backlash 
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Experiment: PID control 

 Short memory principle: memory length 
0.01sec (10 past values) 

=0.7 =0.5 
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Experiment: interesting continuity 

=0.90 =0.89 

=0.88 =0.87 
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Experiment: STS method 
(m=10) 

=0.1 =0.3 

=0.5 =0.7 
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Fractional order filter 
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A general solution 

 Tradeoff between stability margin loss and strength 
of vibration suppression is a common and natural 
problem in oscillatory system control. 

 

 By introducing fractional order low-pass filter 
1/(Ts+1)^a, this tradeoff can be adjusted directly 
and continuously. 

 

 PI control with 1/(Ts+1)^a filter is proposed as a 
general solution with an experimental verification. 
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PI Control 

 The PI-only control has a 
satisfactory performance in 
simulation with nominal plant 
model. 

 In torsional system’s control, 
suppressing vibration, 
especially caused by gear 
backlash must be considered. 

 In order to have a good 
vibration suppression, 
additional factors with 
negative slope and phase-lag 
are needed. 
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Direct tradeoff adjustment 

Stability 

Vibration suppression 
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Broken-line realization 

 To give control system 
enough band width for a 
fast time response, 
T=1/wb=1/200.  

 Approximate 1/(Ts+1)^a 
in frequency range [wb, 
wh]. (wh=10,000) 

 Even taking 2nd 
approximation can give a 
good frequency response. 
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Experiment: PI-only 

 Poor vibration suppression performance 
while system is still stable. 

No backlash with backlash 
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Experiment: continuous 
tradeoff adjustment 

Poor vibration suppression 

Poor stability 

=0.01 =0.2 =0.4 

=0.6 =0.8 =0.99 
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Experiment: 1st approximation 
worked! 

( 3092.4949)
0.2091

( 646.7270)

s

s




Controller of 1st-
order:  

1st-order 3rd-order 
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Experiment: Load inertia 
variation (5 load flywheels) 

=0 =0.2 

=0.6 =0.8 1.0 

=0.4 
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Experiment: Shaft elasticity 
variation (4mm shaft) 

=0 =0.2 =0.4 

=0.6 =0.8 =1.0 
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Fractional order disturbance observer 
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Conventional DOB 
 Q-filter: a low-pass filter to 

restrict the effective 
bandwidth of DOB. 

 

 DOB: a loop-shaping of 
adding more attenuation in 
the lower frequency range. 

 

 Tradeoff: the reduced phase 
margin. Smaller n, better 

vibration suppression 
performance; however, 
poorer relative stability. 
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Robust stability 

The open-loop transfer function 

( )
( )

1 ( )

Q s
L s

Q s




T(s) S(s) 

Complementary sensitivity 
function 

Sensitivity function 

Q(s): 
complementary 
sensitivity 
function 

1-Q(s): 
sensitivity 
function 
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1
( )

( 1)
Q s

s 




An example 

Multiplicative perturbation: 

( ) 1dsT
s e


  

Robust stability: 

( ) ( ) 1T j j 


 

Fractional Q-filter: 
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Direct tradeoff adjustment 

Fractional Q-filter 

1

( 1)s  

Any real 
number! 
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Experiment:  
PI+Conventional DOB 

 Vibration suppression is improved but 
not enough yet. 

PI-only PI+DOB 
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Experiment: 
PI+fractional order DOB 

Poor robust stability 

=0.4 =0.6 =0.8 

=1 =2 =3 

Poor vibration suppression 
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Experiment: 
0.4 order Q-filter 

 Reason: bad robust stability 

No backlash With backlash 



THE UNIVERSITY OF TOKYO 

87 

Experiment:Load inertia 
variation (5 load flywheels) 

=0.6 PI-only =0.8 

=1 =2 =3 
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Experiment: Shaft elasticity 
variation (4mm shaft) 

PI-only =0.6 =0.8 

=1 =2 =3 



THE UNIVERSITY OF TOKYO 

89 

Section 3 

 Brief Review 

 My Contributions 

 Conclusions & future works 

 Publications 
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Position of FOC 

 Theoretical position: FOC opened a new 
dimension for control theory. FOC is also a 
nice generalization of IOC theory.  

 

 Practical advantages: “design by FOC and 
realize by IOC” are inevitable. The practical 

advantages for FOC is to provide more 
flexibility and insight in control design. 
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Unfamiliar but natural choice 

 Modeling and identification: The dynamic 
features of “real” systems can be described 
more adequately by fractional order models.  

 

 Control design: By introducing FOC, a better 
tradeoff  between different prescribed control 
demands could be more easily obtained 
compared to conventional IOC approaches.  
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Clear-cut and effective design 

 Powerful s operator: in FOC, the tuning knob 
can be reduced significantly compared to 
high-order transfer functions designed by 
conventional IOC approaches. 

 

 Two-stage design approach: IOC design 
method gives a good sense of direction and 
novel FOC design method further improves 
control performance. 
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Reasonable realization 

 Various approaches: Several realization 
methods were proposed for the realization of 
fractional order controllers.  

 

 Reasonable approximation: The experimental 
results verify the reliability of fractional order 
controller's realization.  



THE UNIVERSITY OF TOKYO 

94 

Future works … 

 Applying FOC in MIMO system: using transfer function matrix 
should be an interesting research field. 

 

 Fractional order z operator: Generalizing present digital control 
techniques based on FOC concept should be a quite challenging 
and meaningful research. 

 

 Expansion of application field: FOC could be a general and 
effective approach with “in-between” characteristics. Especially, 

a human-friendly control for welfare control may be realized 
based on FOC. 
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Section 4 

 Brief Review 

 My Contributions 

 Conclusions & future works 

 Publications 
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Another impressive 
quotation for the end 

          “... We may express our concepts in Newtonian terms if we 

find this convenient but, if we do so, we must realize that we 
have made a translation into a language which is foreign to the 
organism which we are studying ...”  

           G. W. Scott Blair, Measurements of Mind and Matter, Dennis 

Dobson, London, 1950 

 

       Nature works with fractional time derivatives. With 
fractional order calculus, we may be able to 
extend a lot of new things … 
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