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What is “Fractional”

= Models and/or controllers described by
fractional order differential equations.

+ Fractional order modeling:
0.7943y°™ (t)+5.2385y" %" (t)+1.5560y(t)=u(t)

+ Fractional PID controller:

C(s)=K, + ﬁa' +K,s”
S
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Mathematic definitions

m Riemann-Liouville Definition:

u 1 d” gt 1 B
DO = g 948 r-l<a<y

m Grinwald-Letnikov Definition:

it dimension)

m Fractional order of s means fractional order calculus.

L{oDf f ()] =s“F(s), F.{oD{f()}=(jo)*F(jw)
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Mathematical presentations

m Fractional differential equation:
a, Dtan y(t) +oeeta, Dtal y(t) +a, Dta0 y(t)

=b_D/u(t) +---+b,DAu(t) +b, D u(t)
m Fractional transfer function:

G(s) Y(s) _b,s™ +---+b,s" +bys?
U(s) as™+---+a,s“+a,s™

= State-space model in s-plane:

sX(s)=A(s)X(s)+B(s)U(s)
Y(s) =C(s)X(s)
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Frequency response

= Sinusoidal input
r(t) = Rsin(wt)

Using an asymptotic
expansion of the incomplete l

gamma function

(=D’ 1
t—>00 2 ~ 0 +2nr(_a . 2n) t1+2n+a

= w” sin(wt + % a)

,Dsin(at)| =" sin(et+2a)+ Y. —

|

yt)=Ysin(ot+¢) Y =Rw®, ¢=

T
—
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Example of time responses

m Basically interpolation, but still quite different.
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Example of frequency
responses

m Perfect interpolation, both in magnitude
and phase.
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History of 300 years

Leibnitz introduced the notation d"y/dx". A letter to L’Hospital in 1695
Leibnitz raised the following question:

Can the meaning of derivatives with integer order d"y(x)/dx" be
generalized to derivatives with non-integer orders?

The story goes that L’Hospital was somewhat curious about that
question and replied by another question to Leibnitz:

What is n=1/27?
Leibnitz in a letter dated September 30, 1695 replied:

It will lead to a paradox, from which one day useful consequences
will be drawn.

11
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“New” research with long # %>~
history
m Fractional Order Control (FOC) was

introduced by Tustin for the position control
of massive objects half a century ago in 1958.

PM =180—-(2—«a)x90(deg.)
a=1—>PM =90(deg.)
a=0—>PM =0(deg.)

12
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Robust against gain variation

o: from O to 1
with 0.2 interval \_

01 02 03 04 05 06 07 08 09 1 0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9
Time (s) Time (s)

B 0=0.6, namely 1/s1.4 system, has the best
robustness against saturation non-linearity

13
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obstacles in the past

m FOC was not widely incorporated into
control engineering mainly due to:

ol

ol
d

ol

ne unfamiliarity of taking fractional order

ne existence of so few physical
pplications

ne limited computational power available

at that time.

14
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Resurging interest

= Fractional order differential equations could
describe dynamic processes more adequately.

= Fractional dynamic systems need fractional
order controllers for more effective control.

m Computational power’s progress also makes
modeling and realization of FOC systems
much easier.

m FOC can achieve clear-cut design of robust
control systems.

15
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International community

m The researches on FOC are centered in European
universities.

= France CRONE (Controle Robuste d’Ordre Non-Entier)
team, Denis Matignon, Ivo Petras, Igor Podlubny, J. A.
Tenreiro Machado, Yangquan Chen, etc.

m 1st ASME Symposium on Fractional Derivatives and
Their Applications (FDTA) was held in last year's ASME
Chicago conference.

m 1st IFAC Workshop on Fractional Differentiation and
its Applications (FDA'04) was held last week in
Bordeaux, France.
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ASME Chicago symposium
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Impressive presentations ifFess
IFAC Bordeaux workshop
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Impressive presentations ifpeias:
IFAC Bordeaux workshop

Identification of the |
rabbit muscle behavior

w

Bio-Control with FOC?

(50 Hz t=10 min)

B 4573p +1.43.10°
P=-22.1p"% +73.4p°°%® + 763

Force (en centinewton)
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Three main advantages
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Basic attitude

= Responsibility of pioneer: FOC is still in a primitive stage. AS
a FOC pioneer (maybe), I want to establish a good basis for
future FOC researches.

= FOC should be an engineering research: The mathematics
of FOC can be extremely difficult. However, as an engineering
student, I should not be restricted by difficult mathematics, but
try to apply FOC from engineering view.

= FOC should be useful: Like all the other researches, the FOC
research is also inevitably a team work. Superior application
results will absorb excellent researchers into FOC field.

25
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More natural modeling

m The fractional order model can provide a new possibility to
acquire more adequate modeling of dynamic processes.

= Fractional order models have been applied to describe re-
heating furnace, visco-elasticity, chemical processes and Chaos
system, etc.

m Using fractional order model for describing distributed-
parameter systems is quite natural since the Laplace transform
of partial differential equations will inevitably introduce
fractional order s operator.

27
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An example of fractional ®*%=5

order modeling

1
, 0°0(t, X) klae(t X) _
2 ‘ll' (aXZ
L2 200 -1 29X 82‘9()‘) -0

|

L =15+ JKIl, tanh
1

—

o(t, x) | ( I2.d, k

Magnitude (dB)

- Fraction: __Dldel mod
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10"' 1()
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Stable pole for N(s*) system

m Characteristic equation:

(s*)" +an_1(sa)n—1 feotast+a, =0

n -
O- +an_1a +--.+a10a+aozo

n -
S8, ST st 8 =0
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Nyquist stability criterion

m Take unity-feedback 1/s™o as an example:

o from 2.2to 1
with 0.2 interval
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Impact of s~

o: 0.0 — 2.0 with 0.2 interval
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Smooth transition

= Good control performance:
large loop gain in low-
frequency range

-40dB/dec

= Good robustness: small loop
577 loge> gain in high-frequency
/

-40dB/dec

= A smooth transition is
important to design control
system, which is neither too
conservative (too large stability
margin) nor too aggressive (too
small stability margin).

34
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Robust stability
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Riemman-Liouville definition

et =[ f()dg (), O<a<l  Ag, (k)="—KE ==k

I'(l+a) i
9,(r) = Cra) [t —(t—2)" ] Sampling time between
ft) g _ge
INQE t.”
1 t =nt, I'l+ea)
2% -1
*— —k)“ Tn (n _l) = tsa
g, (kts):[n Nz ]t k=1...n iflene)
; I'l+a)
- =20 .
Ay, (Kty) = gy (Kt) — gy [(k =D)L ] Fl+a)
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Scaled integral

m Based on the trapezoidal integration rule:

. " (kt )+ FI(k =Dt integer order integral
o1y = R g 1.

& f(kt)+ FI(K=Dt.]

Ty (k)
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Derivative of scaled integral

m Riemman-Liouville definition:

1 dgt f(7)
T(1-c) dt o (t—7)°
d| [} (9108, |
- 1dt

_ 11—a _ Ol—zx . Lo
r2-a) °
2170: _11705 . Lo

r-a) °

dzr, O<ax<l

oD f(t)=

Tnl(n)

INGENE

nl—a _ (n _1)1—a . Lo

T, M= r2—a)

40
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Control strategy

= Apply strong control action to latest sampled inputs:

o1 1
u(n) = kzl: 00 [e(k)+ek-1], A (K):= =0

= The rapidly fading influences of the old values and
dominance of the latest ones make FOC “ passively
adaptive” to the present changes of dynamic
Processes.

10000

o000 - The forgetting factor for discrete ¢
controller (sampling time = 0.001sec)

_ 7000
s
£ 6000

2% 5000
=

% 4000

< 3000 _
2000
1000 t o from 1-to 0.2 with 0.2

0

0 100 200 300 400 500 600 700 800 900 1000 411
executive step
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Realization by scaled & REARG
sampling time
= Memorize the behavior of x(t) only
in “recent past”:

DOOX(M) = DYx(t),  t>t+L

m Therefore:

—
o
3
o0

2
@

E

Rl
&p
=

=
=%
g
®
w

=
3

2
®
o
n

[L/T] - — 7 —
Z (Da[x(t)]) & T_a Z CJ Z_J 0 100 200 300 iﬂgm)trl)‘oe 323 700 800 900 1000
j=0
+ integral controllers D¢;
1
= 20 (Wl =
¥ . tor2-a)
(+D"-(j-1" :
%= j=1 0y = (41 =
(1+]al) T T2 -a)

+ derivative controllers D@ : —(j=-D)" —(j-2"“], 41;22 2
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An example

saturation

One-mass position control loop

= Fractional order D a controllers are realized by
sampling time scaling method, in which whole past

values will be remembered.
= The integer order D controller is discretized by the
backward-difference rule:
z-1

dft), | _-J1 e _ =l
Z{?\t_kT}—Z{T(f(kT) Pk 1)T])} 5, T

43



Time responses

o: from 0 to 1 \
with 0.2 interval

02 03 04 05 06 0.7
Time (s)

02 03 04 05 06 07 08 09 1

Time (s)

a: from 0 to 0.8 )
with 0.2 interval /

02 03 04 05 06 07 08 09

Time (s)

1

from 0 to 1 with 0.2 interval

02 03 04 05 06 0.7 08 0.9

Time (s)
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Close-loop frequency responses

[aa]
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Magnitude (dB)
Magnitude (dB)

109
Freq. (rad/sec)

1071 109

1071 100 101
Freq. (rad/sec)

Freq. (rad/sec)

DO Do D1
Resonant peak large intermediate small
Bandwidth BW small intermediate large
Change of BW small intermediate large
Cut-off rate large intermediate small
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Various methods

m Since the fractional order systems have infinite
dimension, proper approximation by finite differential
or difference equation must be introduced.

= For broken-line approximation, further
discretization is needed.

m Three direct discretization approaches: Short
Memory Principle, Tustin Taylor Expansion,
Lagrange Function Interpolation.

47
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Frequency-domain approach

Magnitude(dB)

Mh

i+1/2—a /2 . .
[\ T W . . g f .
1 , " _ _"20adB/dec

S S
N -1 ' W, = a, SOUN -20dB/dec
—h ~ I I i E— ‘ b S - -200dB/dec
S 41 io S 41 i1/ 24/ 2 N
N -"\. y .
@, ) W, :

@ =] @,

_~ideal case

Magnitude (dB)

Pl 0.2091(s + 786.4471)(s + 5561.0205)
B (s+359.6462)(s + 2543.0828)

!

0.4110z° +0.0146z —0.0843

z* —0.5756z —0.0831
48
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Short memory principle

GrUnwald-Letnikov Definition

k
‘,L'Enhz [jtrh

nh=t-a

Z(sk)zT‘kJZ:(;c?z"

Binomial coefficient

Only recent past remembered

& () @ ¢-1 DIf®]~, DIf)]
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Tustin Taylor expansion

m Taylor expansion of fractional k order
well-known Tustin operator:
2(5) ~ (21 7 ]k : (21—21] =ikic'z_j

T1+z* T1+z*

2 [(1x D
where ¢, == K j} o
j! 1+ X

= For implementation, truncation
needed: (21 -

k
— 1 & :
— = — C.Z_J
T1+zlj Tk,.z_:; ’
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Lagrange function interpolation

= Quadratic Lagrange interpolation
between x(k-2), x(k-1) and x(k):
x(K) — 2x(k —2) + x(k — 2) ( t jz ~ x(k) —4x(k-1)+3x(k-2) t

X(t) =
© 2 T 2 T

+ X(k—2) nltn—k
= k order derivative of t": oD (") = =

m For t=2T, the z-transformation is:

1 1
Z@”:TkTF@—M

|(2+k)—4kzt+ kP27 ]
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SMP best

J..=0.001
K, =0.01
T, =0.001sec

m Tustin Taylor expansion and Lagrange function
interpolation are not reliable.

= Sampling time scaling and short memory principle
have similar performances.

= Short memory principle method is most practically
superior due to its simple algorithm. Take memory
length 100 should give good approximation. In real

application, 10 is also acceptable.
52
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Examples for SMP and STS

Z.,o{s"*} = 15.8489 - 6.3396z™ - 1.9019z* - 1.0143z" - 0.6593z" - 0.4747z"
-0.3639z° - 0.2912z" - 0.2402z° - 0.2028z"

Z..{s**} = 8.8689 + 4.5738z" -5.1664z7 - 1.34362° - 0.7834z* - 0.5373z°
- 0.4008z° - 0.3150z7 - 0.25672* - 0.2149z°

m The 10 latest sampled inputs are memorized. The approximated

fractional order controllers can be easily realized by computer
program.

= In sampling time scaling method, gamma function I'(x) needs to
be calculated. The short memory principle’s algorithm is much

easier. Only the four basic operations of arithmetic are needed.
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The experimental setup

« redhat

Pentium IV

Driving servomotoy
Disturbance servomotor

Shaft tacho-generator (driving)
Shaft tacho-generator (lo:
Motor tacho-generator

Shaft encoder (driving)
Shaft encoder (load)
Motor encoder

speaLy], [o1uo) N
[OUIOY] XNUTTLY

onal System

load flywheel friction load adjustment
(changeable) :

_ driving flywheel
load servomotor bearing -~ (changeable)

Torsional shaft
(hanoeahla)
(changeable) P Eﬂ encoder

driving servomoto IR i .
driving servomotor |:| tacho-generator
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Three-mass Model

[ Motor |
E E ( S . 3 — (s* + @) (s + )

Tm Om e i G(s) =
H—%ﬁ ) J.s(s* + @) (s° + @)

~ T @

—
=)
=
<
=
e
-
=

an
3
=
=

Phase (deg.)

103 |
Freq. (rad/sec)
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Point to plane

K. _
C(s)=K, +—+K;s C(s)=K, +£a' +K,s”
S S
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More effective and predictable

Magnitude (dB)

Magnitude (dB)
Magnitude (dB)

100 10

- - - 9
103 104 10°

3
10°
ad/sec)

103 104

Freq. (rad/sec)

Magnitude (dB)

Phase (deg.)

-
=
_
=
_.

100 101 102 103 10% 109
Freq. (rad/sec)

adjust o

100 10! 102 108 10t 108
Freq. (rad/sec)
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My practices on PI*DP control

m [ controller for one-mass robust speed
control (ASME paper)

m PI*D controller for two-mass robust
speed control (IPEMC paper)

m PIDP controller for the vibration
suppression control of torsional system
(IEEJ and ACC papers)
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Integer order PID controller

m Design PID controller with simplified two-mass model
which neglects the backlash between gears.

ol
0 01 02 03 04 0Hh 06 07 08 09 1

30

I (rad/sec)
I el el A
S U1l o ol O O

(0 01 02 03 04 05 06 07 08 09 1
time (sec)

Setpoint-1 PID controller Simulation results
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Introduce fractional D

= Open-loop Bode plot with three-mass model

o =

Magnitude (dB)
Magnitude (dB)
n o

F 200 5 -
103 1 : )2 103
Freq. (rad/sec) Freq. (rad/sec)

—
2
—~
3z
T
=
=
B
=)
=19
<
=
=]

Phase (deg.)

103 104 200 )2 5 104 62

Freq. (rad/sec) Freq. (rad/sec)
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Tradeoff exists

m Tradeoff between gain margin loss and
backlash vibration suppression strength exists.

b2
=)

o)

Magnitude (dB)

g
=R
&
-

fan]
g
=
-
&
[

o

—_
o

-20
0.5 055 0.6 0656 0.7 0.750 0.8 0.85 0.9 095 1
Fractional order k

Gain margin vs 3 Open-loop Bode plots,,
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Discrete realization

m For comparison, SMP and STS are both
introduced. Memorizing 10 past values should
be reasonable.

Short memory principle Sampling time scaling
64
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Experiment: PID control

m Severe backlash vibration occurs, consistent with
the analysis. PID control system is unstable.

‘W MV

0' : : : : : :
0 01 02 03 04 05 06 07 08 09 1 ( 01 02 03 04 05 06 07 08 09 1

25

o

15

10

5/
. I}

I (rad/sec)

0 01 02 03 04 05 06 07 08 09 1 C 0.1 0.2 0.3 04 O 0.6 0.7 08 09 1
time (sec) e (sec)
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Experiment: PIDP control

= Short memory principle: memory length
0.01sec (10 past values)

(o))
=)
o)
-’

c.
S 3

A LA e g g ARy A A B AR A vy

)
S

MWm (rad/sec)
= oW e O
S
m (rad/sec)
— b QO = O
S

o
oo

c.

0 01 02 03 04 05 06 07 08 0.C ( ).1 02 03 04 05 0.6 0.7 0.8

(W)

o
o
=)

]
»an

o

2
20
1
1

= = D DD
()

-}

I (rad/sec)
I (rad/sec)
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Experiment: interesting continuity
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Experiment: STS method ¢ =&~z
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A general solution

= Tradeoff between stability margin loss and strength
of vibration suppression is a common and natural
problem in oscillatory system control.

= By introducing fractional order low-pass filter

1/(Ts+1)”"a, this tradeoff can be adjusted directly
and continuously.

= PI control with 1/(Ts+1)”a filter is proposed as a
general solution with an experimental verification.
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PI Control

= The PI-only control has a
satisfactory performance in
simulation with nominal plant
model.

In torsional system’s control,
suppressing vibration,
especially caused by gear
backlash must be considered.

In order to have a good
vibration suppression,
additional factors with
negative slope and phase-lag
O(i 01 02 03 04 05 06 07 08 09 1 are needed.

time (sec)
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Direct tradeoff adjustment

i+ - 3-inertia model
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Broken-line realization

= To give control system
enough band width for a
fast time response,
T=1/w,=1/200. r NG

= Approximate 1/(Ts+1)"a [N ot
in frequency range [w,,
wy]. (w,=10,000)

= Even taking 2nd .
approximation can give a U ™
good frequency response.

Magnitude (dB)

Bb
2
=

b}

o

o
=
A, -
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Experiment: PI-only
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m Poor vibration suppression performance
while system is still stable.
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Experiment: continuous @ swxs
tradeoff adjustment

= Poor vibration suppression
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Experiment: 15t approximation
worked!
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Experiment: Load inertia %5
variation (5 load flywheels)
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Experiment: Shaft elasticity™=>
variation (4mm shaft)
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Conventional DOB

Magnitude (dB)

|5~

'
[S]

Torsional
System

inverse model
(ts+1)"
Q-filter

s Plant

|
|
i

<

103 _
Freq. (rad/sec)

THE UNIVERSITY OF TOKYO
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Q-filter: a low-pass filter to
restrict the effective
bandwidth of DOB.

DOB: a loop-shaping of
adding more attenuation in
the lower frequency range.

Tradeoff: the reduced phase
margin. Smaller n, better
vibration suppression
performance; however,
poorer relative stability.
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Robust stability

The open-loop transfer function

Q)
M= 120

Q(s):
complementary
sensitivity
function

1-Q(s):
sensitivity

Complementary sensitivity Sensitivity function function
function 81

Magnitude (dB)
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An example

Multiplicative perturbation:
A(s)=e" -1

Robust stability:
IT(jo)A(jo)|, <1

3
=
~

it

==
g
an
vt

=

=

Fractional Q-filter: ;
1 o o f1-01}]1 1t00.2 1
* with 0.2 interva
Qs) =
(TS - 1) 0‘ ' 102 103

Freq. (rad/sec)
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Direct tradeoff adjustment

Torsional

System Fractional Q-filter

inverse model

Any real
number!

fractional order
Q-filter
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Experiment: @ REARG
PI+Conventional DOB

= Vibration suppression is improved but
not enough yet.
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Experiment: & REARG
PI+fractional order DOB
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Experiment:

0.4 order Q-filter
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= Reason: bad robust stability
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Experiment:Load inertia @ s&xs
variation (5 load flywheels)
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Experiment: Shaft elasticitys s=&=5
variation (4mm shaft)
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m Brief Review
m My Contributions
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Position of FOC

m Theoretical position: FOC opened a new
dimension for control theory. FOC is also a
nice generalization of IOC theory.

m Practical advantages: “design by FOC and
realize by IOC” are inevitable. The practical
advantages for FOC is to provide more
flexibility and insight in control design.
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Unfamiliar but natural choice

= Modeling and identification: The dynamic
features of “real” systems can be described
more adequately by fractional order models.

m Control design: By introducing FOC, a better
tradeoff between different prescribed control
demands could be more easily obtained
compared to conventional IOC approaches.
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Clear-cut and effective design

m Powerful s* operator: in FOC, the tuning knob
can be reduced significantly compared to
high-order transfer functions designed by
conventional IOC approaches.

= Two-stage design approach: IOC design
method gives a good sense of direction and
novel FOC design method further improves
control performance.
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Reasonable realization

= Various approaches: Several realization
methods were proposed for the realization of
fractional order controllers.

m Reasonable approximation: The experimental
results verify the reliability of fractional order
controller's realization.
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Future works ...

= Applying FOC in MIMO system: using transfer function matrix
should be an interesting research field.

m Fractional order z* operator: Generalizing present digital control
techniques based on FOC concept should be a quite challenging
and meaningful research.

= Expansion of application field: FOC could be a general and
effective approach with “in-between” characteristics. Especially,
a human-friendly control for welfare control may be realized
based on FOC.
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Another impressive EE 2
quotation for the end

“... We may express our concepts in Newtonian terms if we
find this convenient but, if we do so, we must realize that we
have made a translation into a language which is foreign to the
organism which we are studying ...”

G. W. Scott Blair, Measurements of Mind and Matter, Dennis
Dobson, London, 1950

Nature works with fractional time derivatives. With
fractional order calculus, we may be able to
extend a lot of new things ...
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