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Abstract—High-accuracy localization technology has gained
increasing attention in gesture and motion control and many
diverse applications. Due to multi-path fading and blockage
effects in indoor propagation, 0.1m-level precise localization is
still challenging. Promising for 6G wireless communications,
the Terahertz (THz) spectrum provides multi-GHz ultra-broad
bandwidth. Applying the THz spectrum to indoor localization, the
channel state information (CSI) of THz signals, including angle
of arrival (AoA), received power, and delay, has unprecedented
resolution that can be explored for positioning. In this paper,
a Structured Intra-Attention Bidirectional Recurrent (SIABR)
deep learning method is proposed to solve the CSI-based three-
dimensional (3D) THz indoor localization problem with signifi-
cantly improved accuracy. As a two-level structure, the features
of individual multi-path rays are first analyzed in the recurrent
neural network with the attention mechanism at the lower
level. Furthermore, the upper-level residual network (ResNet) of
the constructed SIABR network extracts hidden information to
output the geometric coordinates. Simulation results demonstrate
that the 3D localization accuracy in the metric of mean distance
error is within 0.25m. The developed SIABR network has very
fast convergence and is robust against THz indoor line-of-sight
blockage, multi-path fading, channel sparsity and CSI estimation
error.

Index Terms—Terahertz communications, indoor localization,
deep learning.

I. INTRODUCTION

Fast developing mobile devices and wireless technology
have brought diverse applications like autonomous driving, un-
manned aerial vehicles, virtual/augmented reality, and gesture
and motion control under the spotlight. On one hand, high-
accuracy three-dimensional (3D) localization technology has
never been strongly demanded as it is today [2]. On the other
hand, the Terahertz (THz) band with ultra-broad bandwidth
has drawn tremendous interests to support these promising
applications in 5G and future 6G wireless systems [3], [4].
Therefore, a promising yet challenging research direction on
THz localization is motivated and stringent.

Although the Global Positioning System (GPS) provides an
excellent solution for outdoor localization, indoor localization
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still receives increasing interests to advanced accuracy in com-
plex propagation environments [2], [S]-[12]. Different from
the GPS mechanism where line-of-sight (LoS) transmission is
mostly available, indoor localization involves complicated ra-
dio propagation phenomena, including multi-path fading, line-
of-sight (LoS) blockage, among other effects. The problem
evolves more challenging by incorporating the unique charac-
teristics of THz propagation, including very high propagation
attenuation, atmospheric molecular absorption, rough-surface
reflection and scattering, and channel sparsity [13].

Specifically, since the spreading loss increases quadratically
with the frequency and the atmospheric effects may attenuate
the THz wave propagation, the propagation loss in the THz
band becomes much higher than the lower frequency bands
[14]. To compensate for this severe path loss, the massive
multiple input multiple output (MIMO) and beamforming
techniques are usually used to enable direction transmission
with multiple antenna beams and high antenna gains [15].
Meanwhile, due to the ultra-high penetration loss, the THz
signals can be obstructed by indoor blockages, such as static
wall blockers and moving human bodies. Moreover, diffuse
scattering in the THz band causes severe losses, which leads
that the number of the dominant rays decreases and the sparsity
of the THz channel arises [13]. In particular, the energy of the
received THz signal is mainly concentrated in the LoS ray and
several specular reflected rays.

As a result, THz non-line-of-sight (NLoS) propagation
needs to be rigorously treated in indoor localization, in order
to make full use of the information within several specular re-
flected rays. Existing solutions such as triangulation and radio
map [6], [16], which use received signal strength indication
(RSSI) for WiFi networks, are vulnerable to the LoS blockage
and naturally have low positioning resolution at lower fre-
quencies. Furthermore, current AoA based solutions [17], [18]
struggle between high accuracy and specially modified exper-
imental settings. Recently, rapidly rising artificial intelligence
(AI) techniques are borrowed to solve the localization prob-
lem. The still limited efforts focus on 2D indoor environments
and are not compatible with THz propagation peculiarities [5],
[7], [9], [11], [19], due to the major differences between
the THz spectrum and lower frequency bands in free-space
attenuation, atmospheric molecular absorption, rough-surface
reflection and scattering, and channel sparsity [13].

In this work, the objectives are to solve the 3D THz indoor
localization problem and achieve ultra-accurate positioning, by



leveraging deep learning networks. In particular, the channel
state information (CSI) of THz indoor environment, includ-
ing 3D angle of arrival (AoA), received power, and delay,
are extracted and explored for localization. To address the
THz indoor propagation challenges, we invent a structured
intra-attention bidirectional recurrent (STABR) deep learning
method for ultra-accurate Terahertz indoor localization, which
utilizes the CSI of THz wireless signals from multiple trans-
mitters and estimates the 3D location of targeted receivers.
According to the definition from [2], our proposed schema
is device-based localization (DBL), where the user device
uses three transmitters (TX) to obtain its relative location. In
the proposed SIABR method, two interconnected levels are
designed in the neural network, in which the lower level con-
sists of three base bidirectional long short-term memory (Bi-
LSTM) networks that extract the THz NLoS ray features from
three Tx cooperating with intra-attention mechanism, while the
upper level integrates five blocks of residual network (ResNet).
Remarkably, the mean bagging mechanism is implemented to
reduce the variance of the estimated results.

Moreover, the proposed model is based on the extraordi-
nary temporal and spatial resolution due to the ultra-broad
bandwidth, and frequency- and distance-adaptive multi-path
effects in the THz band. Compared to the mmWave and lower
frequencies, the channel sparsity effect is much more severe in
the THz band, due to the propagation attenuation, atmospheric
molecular absorption, rough-surface reflection and scattering.
Being incorporated in our proposed SIABR model, the intra-
attention mechanism, upper-level residual learning and mean-
bagging technique are designed to reinforce the robustness
over the THz channel sparsity, static or dynamic blockage,
limitation of dataset size and CSI estimation error.

The distinctive features of this work are summarized as:

« We propose a novel paradigm for investigating the 3D

THz indoor localization problem, including designing
a complete schema to build a valuable and tailored
THz localization database used for the supervised
learning method. The CSI dataset in the THz band is
constructed based on a ray-tracing simulator, in consider-
ation of the THz channel peculiarities. To the best of our
knowledge, this is the first attempt on THz localization
for beyond 5G wireless systems.

o We develop the novel SIABR architecture for the
THz localization, by constructing two interconnected
levels. The lower level consists of three base Bi-LSTM
networks with an intra-attention mechanism that extract
information from the THz NLoS ray features. By mutual
interaction among features from different transmitters,
the intra-attention mechanism is useful for the network
to focus on the representative sequence segments with
adaptive weights, and eventually grasp more comprehen-
sive understanding of the indoor environment. The upper
level integrates five blocks of ResNet to estimate the 3D
location of the targeted receivers with ultra-high accuracy.

o We conduct extensive performance evaluation of the
SIABR method for 3D THz indoor localization in
two representative environments. Simulation results
demonstrate the high efficiency and fast convergence

of the proposed SIABR method in the THz multipath
environment. Solid robustness of SIABR over THz chan-
nel sparsity, static or dynamic blockage, limitation of
dataset size and estimation error is presented through the
paper. Under these practical conditions, the localization
accuracy in the metric of mean distance error achieves
below 0.25m, which is highly competitive in contrast to
the existing techniques from the literature.

The rest of this paper is organized as follows. Related work
is surveyed in Section II. A framework of Terahertz indoor
localization is depicted in Section III. Next, the system design
of THz indoor localization is discussed in Section IV. We
delineate the methodology of SIABR in Section V. Then,
in-depth performance evaluation is described in Section VI.
Finally, the conclusion is drawn in Section VII.

II. RELATED WORK

For indoor localization, existing studies and experiments
relate to ultra-wideband (UWB) [2], [5], [7], [9], [11], [19],
[20] and millimeter-wave (mmWave) systems [8], [21]. How-
ever, these frequency bands suffer from crowded applications
and high interference, which limit the accuracy of indoor
localization to 1m, under practical 3D indoor environment
with multi-path fading and blockage effects. By contrast, the
THz band, specifically 95 GHz — 3 THz, has been approved
by FCC for experimental use and reserved for future cellular
systems [22]. This is aligned with the trend of requiring higher
carrier frequencies in 5G and 6G wireless communications.
Intrinsically, multi-GHz broad bandwidth, ultra-high temporal
and spatial resolution of the THz signals bring advantages for
localization in complex multi-path indoor environments.

To solve the indoor localization problem, methods can be
classified into two main categories. On one hand, classic
approaches use deterministic techniques, including triangula-
tion [16], nearest neighbor in signal space (NNSS) [12] and
radio map [6] based on the received signal strength (RSS)
to estimate indoor positions. For RSS based non-learning
methods, the estimation error cannot be reduced below 2m
in indoor environments. Recent angle of arrival (AoA) based
estimations such as ArrayTrack [17] and SpotFi [18] achieve
a satisfying accuracy on median distance error. However, the
performance of the localization strongly depends on the num-
ber of access points up to 6 and requires extra modification on
them. Meanwhile, a fine-grained indoor fingerprinting system
(FIFS) method is proposed to explore the channel status over
all the subcarriers rather than using the RSS or AoA value, and
uses the radio map to conduct location estimation [7]. Besides,
while recent work in [23], [24] has explored some conventional
THz localization methods with high estimation accuracy, they
are not robust to a NLoS environment. In general, non-learning
methods either struggle with low accuracy above 2.5m or the
specially modified experimental setting.

On the other hand, with the uprising Al technologies,
learning methods can be leveraged to solve the indoor lo-
cation problem, including the studies of WiGEM leverag-
ing gaussian mixture model (GMM) and expectation max-
imization [25], DeepFi using restricted Boltzmann machine
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Figure 1: The system architecture of Tera-Loc.

(RBM) [5], BiLoc [19] and channel charting (CC) [24] based
on auto-encoder, K-nearest neighbors (KNN) [10] and deep
convolutional neural network (DCNN) [9], respectively. These
studies extract the hidden features of CSI information and en-
hance the localization accuracy by at least 20%, in comparison
to those non-learning methods. The highest accuracy, reported
in [9], reduces the mean distance error to 2m in a complex
lab environment and adopts the DCNN approach.

In summary, the literature studies on indoor localization
mostly focus on microwave and mmWave frequency bands,
while the THz localization problem in a 3D indoor envi-
ronment with unique channel features and challenges is still
untouched. Although the learning methods can substantially
improve the accuracy over classic estimation approaches, ultra-
accurate localization under practical indoor conditions that
reduces the 3D distance error below 0.3m is still not reachable.

Hence, these aforementioned open problems and challenges
motivate this study. In our preliminary and shorter version in
[1], we invent a structured bidirectional LSTM (SBiLSTM)
and improve the localization accuracy over the state-of-art
solutions significantly. Remarkably, there are three major
extensions to distinguish between our conference paper and
this journal version. In Sec. III, we propose a novel paradigm
for investigating the 3D THz indoor localization problem. The
paradigm includes designing a complete schema to build a
valuable and tailored THz localization database used for the
supervised learning method, which is not formally covered in
the conference paper. Besides, on the basis of our preliminary
SBiLSTM structure, we further strengthen the deep learning
network by introducing a new intra-attention mechanism,
which enhances the ability to comprehensively extract the
hidden patterns from the ray sequences and feed the upper
level with less information loss. Furthermore, we also provide
time complexity analysis for training and testing phases, and
substantially more extensive performance evaluation under
various practical indoor conditions, including THz multi-
path channel sparsity, dynamic indoor blockage and influence
of CSI estimation errors. In terms of localization accuracy,
the proposed SIABR in this work achieves additional 7%
improvement, compared to the SBiLSTM algorithm in [1].

III. SYSTEM DESIGN OF TERAHERTZ INDOOR
LOCALIZATION

A. System Framework

The overall framework of Terahertz localization (Tera-Loc)
is described in Fig. 1, which is divided into two parts, namely,

Rough-surface walls

Reflected ray 1

Diffracted ray

THz UE

Reflected ray 2

(a) The horizontal view of the multi-ray propagation between the
THz access point and the user equipment.
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(b) The vertical view of static and dynamic blockage, caused by
furniture and human body.

Figure 2: The illustration of the indoor environment for the multi-ray
propagation and blockage effects in the THz band.

online and offline stages. At the offline stage, we first obtain
the CSI features of the received signals at the user equipment
(UE) from multiple THz access points (APs). To start with
thousands of reference points, this transmission and reception
process is repeated to enrich the size of the training dataset and
improve the accuracy of the deep learning method. Meanwhile,
the position of the UE is measured and transformed to 3D
coordinates. With the dataset composed of these CSI features
and locations, we train the proposed SIABIR neural network.
Then at the online stage, by deploying the trained model on the
CSI features of the UE, real-time localization is implemented
to generate ultra-accurate 3D UE coordinates.

B. Terahertz Channel

The THz propagation in the indoor environment has been
characterized in [13], in which a multi-ray channel model
is developed. In Fig. 2(a), a stationary indoor environment,
there are Nger reflected rays and Np;e diffracted rays, then the
channel response of the multi-ray propagation is described as

NRet
h(T) =01es0(T — Tios)LLos + a1 (r — b))
p=1
& ) (@) v
+ Z O‘inf(s(T - TD(iZf)
q=1

where 7 denotes the propagation delay, d(-) describes the unit
impluse function, and 1;,g is the indicator function that is
equal to 1 or O for the presence of LoS path or not. ays,
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reflected path and qth diffracted path, respectively. 7o, Tlggf),
T]g'ff) represent the propagation delay for corresponding rays,
and can be computed by the equation 7,, = =, where 7, is
the distance of the n™ path and c is the speed of the light.

In addition to the characteristic of the multi-ray propagation,
THz signals are sensitive to the indoor blockage due to the
high penetration loss. In Fig. 2(b), we describe the blockage
effects in the indoor environment for the THz localization. On
the one hand, the existence of the static blockage, such as walls
and furniture, may result in the decrease of the number of the
THz rays. On the other hand, some of the rays are likely to
be suddenly blocked by the dynamic blockage, especially the
human bodies in a crowded environment. This is a common
phenomenon that may have a bad effect on the localization
accuracy. Therefore, the robustness to the static and dynamic
blockage of our method will be investigated in the performance
evaluation. For localization, the main CSI features include
AoA, propagation delay, and path loss, which can be obtained
by the estimation algorithms as presented next.

refers to the attenuation for the LoS path, p"

C. Delay Estimation

The delay estimation algorithms have been widely in-
vestigated in the sensing and communication applications.
Recently, attention has been drawn on joint communication
and sensing (JCS) techniques [26], since they enable sharing
of hardware and signal processing modules. The propagation
delay can be estimated by the sensing algorithms from the
received communication signals without sacrificing data rate.

For the multi-path delay estimation, a potential scheme
in the communication system is the orthogonal frequency
division multiplexing (OFDM) based JCS design [27], which
is highly spectral-efficient and have strong robustness to
frequency-selective channels and high MIMO compatibility.
THz OFDM with hybrid beamforming and MIMO techniques
is still of great significance for THz communications over
frequency-selective channels [28]. With OFDM, different car-
riers experience beam-squint at THz frequencies, which can
be mitigated by utilizing delay Vandermonde matrices [29].

We consider that a THz AP transmits a N-length OFDM
symbol block z[n],n = 0,1,--- , N — 1, modulated over N
subcarriers. The received block after OFDM demodulation is

L
yln] = Z e I2mTnAS gln] 4 wn, 2)
=1

where «; and 7; denote the attenuation and the propagation
delay of I'" ray between the AP and the UE according to (1), ¢;
describes the random phase distributed in [0, 27) and caused
by the reflection that rotates the signal, Af stands for the
subcarrier spacing of OFDM waveform, and w[n] represents
the additive Gaussian noise. With the super-resolution sensing
algorithms, such as the multiple signal classification (MUSIC)
approach, the variance of the estimated delay 7 can be close
to the Cramér-Rao lower bound (CRLB) [30]
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Figure 3: 2D estimation results of delay and AoA.

where SNR denotes the signal-to-noise ratio (SNR) of the
ray power, and M describes the number of OFDM blocks.
From (3) we learn that the delay estimation accuracy can be
improved by increasing the number of subcarriers N and the
subcarrier spacing A f. Thanks to the ultra-broad bandwidth in
the THz band, the estimation accuracy can achieve picosecond-
level. For instance, when using 256 subcarriers and 5 MHz
subcarrier spacing, the lower bound of the delay accuracy is
about 6 picoseconds at the SNR of 10 dB.

D. AoA Estimation

Due to the sub-millimeter wavelength of the THz wave,
an ultra-massive multiple-input multiple-output (UM-MIMO)
system is allowed to be deployed at the THz APs and UEs.
An array-of-subarrays (AoSA) hybrid beamforming structure
is a promising technology owing to its high beamforming
gain and reduced hardware complexity for THz wireless
communications [31]. In this case, the AoA information at
the UE is able to be accurately estimated.

We consider to employ uniform linear antenna arrays (ULA)
for the azimuth AoA estimation, where the antenna elements
is equally spaced at half wavelength. For an array with K
antennas at both transmitter and receiver, the THz UM-MIMO
channel matrix is given by

L
H =" ad(r — n)a(th)a” (6.1) )
=1

where for the /™ path, 7; is the propagation delay, 6,.; and 6;
are the azimuth angle-of-arrival and the angle-of-departure,
and the array response vector a(f) is given by

a(e) = |1, ejﬂ' sin(@)’ s ejﬂ'(Kfl) sin(0) T (5)

where § is for either 6, ; or 6, ;, and ()T denotes the transpose
operation. Tailored for THz AoSA hybrid beamforming, a
AoSA-MUSIC algorithm is proposed in [32] for the AoSA
architecture, which can achieve a millidegree-level estimation
accuracy. The CSI estimation techniques can be also extended
to the spherical-wave channel model for the THz MIMO
systems [33], which is more accurate than the uniform plane
wave assumption.

The above parameters, delay and AoA, can be also estimated
jointly for each path by developing 2D estimation algorithms.



In Fig. 3, we choose a sample in the dataset for the localization
problem and show the joint delay and AoA estimation results.
The real delays and AoAs for each ray are denoted by the
red circles. The plot of delay-angle profile indicates that the
features of all rays can be jointly and accurately estimated in
wireless systems.

While the employment of the ultra-broad bandwidth and the
use of large antenna arrays are able to provide accurate CSI
features with less estimation error compared to the microwave
band, it is still of great significance to study the influence on
the localization accuracy caused by the bias when estimating
the CSI features, especially the delay and AoA information.
This type of error can be characterized by the estimation
variance. It is predicted that the localization accuracy will be
reduced if the variance of the estimation error becomes larger,
owing to the loss of the information contained in the CSI
features, which will be validated by the experiments.

IV. RAY-TRACING CHANNEL SIMULATION OF TERA-LOC
SYSTEM

A. Ray-Tracing Simulation

Ray-tracing techniques have been widely adopted to sim-
ulate the electromagnetic (EM) wave propagation, based on
geometric-optics principles [13], [15]. As a complementary
approach to the experimental measurement, a good balance be-
tween accuracy and computational complexity can be achieved
by the ray-tracing simulation, which is favored for millimeter-
wave and THz propagation studies in recent years [13], [15].
In this work, we generate the indoor environment and simulate
the THz wave propagation, by using a commercial software
Wireless InSite®. This software includes a suite of ray-tracing
models and high-fidelity EM solvers for the analysis of site-
specific radio wave propagation and wireless systems.

Specifically, the ray tracing simulations use the shoot-and-
bouncing-ray (SBR) ray-tracing method. During the simula-
tion, the number of the reflections is limited to 6, which covers
a reasonable portion of rays that could be detected in the real
scenarios. The maximum number of diffraction for the ray to
reach the receivers is 1, considering the power of rays reduces
significantly after once diffraction. With these constrains, the
average number of rays for each receiver-transmitter pair is 24.
Each ray corresponds to one group of CSI features including
power, delay, elevation AoA and azimuth AoA. The carrier
frequency is 100 GHz, and the bandwidth is 5 GHz. We build
a 3D coordinate system, where O is regarded as the origin,
x-y spans the horizontal plane, and the positive z-axis points
vertically upwards to represent the height above the ground.
In Fig. 4 and Fig. 5, two indoor environments are simulated
for our analysis and described as follows.

1) Environment 1: The first environment in Fig. 4 is a
hall, modeled as a cuboid with a size of 25mx25mx5m
(Iengthx width xheight). It contains four cuboid pillars stand-
ing on the floor and below the ceiling with a size of
Smx5mx5m, whose centers are located at (7.5m, 9m),
(17.5m, 9m), (7.5m, 18m), and (17.5m, 9m), respectively. The
material of the ceiling, floor and walls, as well as the four
pillars inside the hall, is concrete. This environment reveals the
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Figure 4: Environment 1. The left figure is the top view of the
environment, in which the color points show the delay information
of the signal from transmitter #1 to the receivers in the first layer
with the height of 0.5m. The right figure is the 3D demonstration of
the environment.
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Figure 5: Environment 2. The left figure is the top view of the
environment, in which the color points show the delay information
of the signal from transmitter #1 to the receivers in the first layer
with the height of 0.5m. The right figure is the 3D demonstration of
the environment.

performance of the proposed model in a large and symmetrical
hall environment with strong blockage effect.

Three transmitters, represented by black points in the top
view of Fig. 4, are respectively placed at (1.93m, 13.71m,
2.00m), (13.55m, 13.63m, 2.00m), (25.45m, 13.5m, 2.00m),
from which a high coverage can be ensured in the indoor
environment. As for the receivers, we choose 7 evenly-
distributed horizontal layers with the heights ranging from
0.5m to 3.5m above the ground. The height difference between
the neighboring two layers is 0.5m, which is chosen based
on the trade off between none-oversized dataset and sufficient
resolution on z-axis for common application. At each layer,
receivers are randomly located outside the pillars. In this case,
our training set can cover majority of the indoor environment.

2) Environment 2: The second environment in Fig. 5
is a laboratory, which is considered as a 13mx13mx3m
cuboid model. There are three long tables in the middle and
each of them has the size of 7.5mx1.5mx1.2m. Meanwhile,
fifteen seats, whose size are identically 0.5mx0.5mx0.7m,
are distributed between the tables. In the front of the lab,
a board (2mx3m) is vertically placed, and a pair of desk
(1.5mx0.5mx1.2m) and seat (0.5mx0.5mx0.7m) stands be-
side it. The tables, seats, and the board are made of wood. In
addition, two air conditioners with a 1mx ImXx2m rectangular
shape, simplified as metal boxes, are installed in the two diag-
onal corners of the room. Moreover, two 1m-wide doors are
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Figure 6: Normalized path gain of multiple rays versus propagation
delay for LoS and NLoS cases in the simulated environment 2.

opened on the left side of the room, while there are two single-
glazing windows on the right wall. This environment studies
the proposed method in a laboratory with more materials, more
polyhedral surfaces and less symmetry properties.

Similarly, three transmitters in Fig. 5 are selected, whose co-
ordinates are (12.02m, 7.37m, 2.00m), (6.34m, 9.44m, 1.50m),
(3.39m, 3.38m, 2.50m). Five layers of receivers are chosen,
whose heights are 0.5m to 2.5m with a interval of 0.5m. The
horizontal position of each receiver is randomly distributed in
the lab, excluding the areas occupied by the furniture.

LoS Availability: Environment 1 contains four rectangular
pillars in the hall, while environment 2 is more complicated
involving with more obstacle objects and polyhedral surfaces.
Therefore, the LoS probability varies between these two
environments. To evaluate the LoS property of the receivers
recorded in the dataset in both environments, k1,5 = 0,1,2,3
indicates the total number of LoS ray for each receiver from
the three transmitters. Given an integer threshold i, we denote
YLos () as the ratio between the number of receivers having at
least ¢ LoS and the total number of receivers, which is listed
in Table I for the two different environments.

Path gain versus propagation delay: Fig. 6 shows the
normalized path gain of multiple rays as a function of the
propagation delay for LoS and NLoS cases in the simulated
environment 2. In Fig. 6(a), the rays between Tx#1 and a
typical LoS Rx in environment 2 are illustrated, with the LoS
ray in the upper left corner with the time-of-arrival (ToA) of
40 ns. With the path gain and delay spread, the coherence
bandwidth of this Tx-Rx pair is 0.67 GHz. Moreover, Fig. 6(b)
demonstrates the path gain of rays between a typical NLoS
Rx and Tx#1 in environment 2, with absence of the LoS ray.
The received energy is widely distributed among the NLoS
rays, and the coherence bandwidth reduces substantially to
0.10 GHz. In both two cases, the coherence bandwidth is
much smaller than the total used bandwidth, which causes the
frequency-selective channels. Motivated by this, we propose
the OFDM-based CSI feature estimation method for the Tera-
Loc framework in Sec. III

B. CSI Signal Pre-processing

For the purpose of collecting data, large amount of receivers
are placed under both environments. The labels are the {z, y,
z} coordinates of the receivers. From the three transmitters,
each individual receiver detects 72 arrival rays in total. The

TABLE I: Proportion of the receivers having LoS signal with respect
to different kr.s values for both environments.

| YLos(1) | YLos(2) | vLos(3)

Env. 1 0.9175 0.2750 0.2475
Env. 2 0.9018 0.7619 0.7064
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Figure 7: Data structure of the training set in the SIABR network.

features of rays, including the AoA, delay, power and index of
the anchor transmitter, are recorded for training and testing the
proposed network. The data structure is presented in Fig. 7.
By contrast, for the network training purpose, 4000 and 2800
reference receiver points are used in environments 1 and 2,
respectively. Correspondingly, environment 1 and 2 have 1.28
and 5.52 reference receiver points per cubic meter. In addition,
another 500 points are reserved to test the accuracy of the
proposed network in performance evaluation in Section VI.

In order to test the model robustness based on the SIABR,
we further simulate the estimation error and background noise,
by adding zero-mean Gaussian noise to all features in both
environments, including AoA, power and delay.

Data normalization is implemented on the dataset, in or-
der to lessen the computational burden of the network and
increase the convergence ability. First, zero-score standard-
ization, which linearly transforms the standard deviation to
one and the mean to zero, is conducted for the features,
including AoA values, delay values and power values. This
zero-score standardization ensures that the effect of any one
input is on the same scale as the others. Then, max-min
normalization, applied on the location estimation targets, maps
the coordinates, {x, y, z}, to [—1,1].

Moreover, we apply zero-padding on this dataset, for the
following two reasons. First, the number of the rays between
different pair of receiver and transmitter varies, causing dif-
ferent length of each network input, while zero-padding can
unify their length. Second, the zeros padded to the end of the
inputs help the network to identify where the ray sequence
ends and ensure the model convergence. The number of rays
from each transmitter is padded to 40, which ensures that no
simulated rays are discarded. The final dimension of the input
is 120x5, which indicates 120 rays in total after zero-padding
and 5 features for each ray.

V. STRUCTURED INTRA-ATTENTION BIDIRECTIONAL
RECURRENT DEEP LEARNING METHOD

In this section, we delineate our proposed STABR method
in terms of the network structure and algorithms.



Location of the
reference Rx

”-
Upper Level ResNet

Upper level
network

Intra-transmitter Attention

r
| Base BiLSTM #1 || Base BiLSTM #2 || Base BiLSTM #3 | | Optimization: Adam |

1 Loss function: MSE I
Tx#1 Ray Tx#2 Ray Tx#3 Ray
Features Features Features

1 Activation function:
1 tanh, sigmoid and ReLU !

Figure 8: The proposed SIABR deep learning network for THz indoor

localization.

Lower level
network

Output of the
Bidirectional LSTM

&
Qw
£f
23
E a
-
T
Jake| WLST
plemyoeg

T
Jahe| WIS
piemiog

/i Power /i Power ]
Azimuth AoA Azimuth AoA Azimuth AoA

Elevation AoA Elevation AoA Elevation AoA

ToA ToA ToA
Tx# 1, Ray # (i-1)

T
anduj
pappaqui3

Tx# 1, Ray # (i+1) Tx#1,Ray #i

Figure 9: The base Bi-LSTM network for Transmitter #1.

A. Network Architecture

In order to address the problem of THz indoor localiza-
tion, we develop a Structured Intra-Attention Bidirectional
Recurrent network, which is a deep learning approach. As
shown in Fig. 8, the whole network consists of the lower
level and the upper level. The former part is composed of
three parallel single layer Bi-LSTM neural networks with
intra-attention mechanism [34]-[37], whose inputs gain from
the information provided by the three transmitters. Then their
outputs are concatenated and make up the inputs of the upper
level network, which conducts the residual learning for the
estimated location. The upper level network contains multiple
residual blocks [38], as well as a fully connected layer used for
outputting the targets. Experimenting to minimize the error and
maximize the convergence efficiency, the number of residual
blocks is set to 5. The technical details of each part are
illustrated in the rest of this section.

B. Base Bi-LSTM Network

The Bi-LSTM model [34] is used at the lower level of our
proposed network, where each Bi-LSTM network successfully
extracts patterns from the ray information of one transmitter
and significantly improves the accuracy of the location estima-
tion. Fig. 9 is an illustration of one of the three Bi-LSTM at the
lower level. We start with description of the classic recurrent
layer, LSTM [35]. The main advantage of using LSTM is its
ability in revealing the internal relation between rays. LSTM
differs from fully-connected network and many other machine
learning methods that flatten the 120x5 input matrices into
600 features and treat them equally. It maintains the structure
of the input matrices, sequentially processes each rays and

LSTM Cell

Figure 10: An LSTM unit.
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remembers the information inside the LSTM cell. Therefore,
LSTM structurally captures the characters of the input matrices
while reduces computational burden. In Fig. 10, a LSTM
unit is composed of a memory cell, which is responsible
for maintaining the information extracted from the former
cell sequence. Three gates of a cell control the flow of the
information among the LSTM units, including the input gate
for the information inflow, the output gate for the outflow, and
the forget gate for discarding values.

At timestep ¢, we assume that f; € R stands for the forget
gate, iy € R" describes the input gate, o; € Rh represents the
output gate, ¢; € R" denotes the memory cell in the unit, and
h; € R" stands for the hidden state. The superscript d refers
to the number of the input features, i.e., the features of a ray
in our problem, and h indicates the dimension of the hidden
units. Then, the propagation of values in a LSTM unit contains

fr=0q(Wsxy + Ughe—1 + by), (6a)
iy = og(Wize + Uihi—1 + b;), (6b)
or = 0g(Woay + Ughi—1 + bo), (6¢)
¢t = fr-coo1+ i on(Wewy + Uchy—1 + be), (6d)
ht = ot - op(ct) (6e)

where x; € R is the input vector to the LSTM unit, and o, o,
are activation functions serving for the logic of forgetting and
remembering in the LSTM gates and defined as
1 et —e”*
= — e — 7
1+e2’ on() er +e " ™
AllU € R"*4s and W € R"*"s denote weight matrices and
b € R"s stands for the bias vector, which are learned during
the training of the neuron network. At the lower level of our
network, we adopt a Bi-LSTM approach [34], which is able
to promote the accuracy for the indoor localization, though

o4()



applying the bidirectional property increases the complexity
of the network. Naturally, in order to extract comprehensive
information from the features of a ray, we need to consider it
under the context of all rays. However, in classic LSTM, the
information extracted from i" ray only depends on the 1% to
(i — 1)™ rays so that only narrow part of the information can
be remembered in LSTM cell. By contrast, with bidirectional
structure in Fig. 9, when analyzing the i ray in the recurrent
network, Bi-LSTM cells can remember both the (i — 1) rays
before it and (n—i) rays after it, where n indicates the number
of total rays. Thus, using Bi-LSTM can make the network
have a more comprehensive learning over all rays and achieve
a better localization accuracy.

The traditional LSTM is forward LSTM, which sequentially
accepts the rays in the input matrices from the first arrived
ray to the ray with largest delay. By contrast, the backward
LSTM accepts these rays in a reverse manner, from the last
arrived ray to the ray with smallest delay. In our design, the
adopted Bi-LSTM combines a forward LSTM and backward
LSTM together. The input of a Bi-LSTM is described as
X = {x1, -7} € RT*4 where T refers to the number
of received rays for each receiver. Then, the output of a Bi-
LSTM is calculated as

OZUOCF(X)+WOCB(X)+bO (8)

where O denotes the output neuron vector, C'r represents the
neuron output for a forward LSTM that accept X in sequence
{x1 -z}, while Cp is the neuron output for the backward
LSTM, accepting X in sequence {xr ---x1}, and U,, W, b,
are the trainable matrices.

C. Intra-transmitter Attention Mechanism

In addition to the Bi-LSTM applied at the lower level,
we further propose an intra-transmitter attention mechanism
aimed at enhancing the ability to comprehensively extract
the hidden patterns from the ray sequences and feed the
upper level with less information loss. The intra-transmitter
attention mechanism is inspired by the intra-sentence attention
mechanism [37], which was designed for natural language in-
ference between short sentences. When using the bi-directional
network, there is little information exchange among the three
base networks and all sequences are treated independently. In
other words, no information exchange happens before neuron
weights forward propagate [34] into the upper level network.
Information fusion of the three separate transmitters is only
conducted non-sequentially at the upper-level network without
sufficient interactions and augmentations. This motivates the
utilization of the intra-transmitter attention mechanism, in
which the adaptive weights assign different importance to
different parts of the sequential inputs. By applying this
mechanism, the base Bi-LSTM network can increase the
information density and provide better location information for
the upper level network. Intuitively, with information exchange
at the lower level, three base Bi-LSTM model can generate
more orthogonal features and further improve the localization
accuracy. Thus, the information from the transmitters can be
influenced in both upper- and the lower-level networks. Thanks

to this kind of mutual information exchange in the early stage
of neural network, each base Bi-LSTM is able to extract the
information more accurately.

In our network, an information flow of this intra-transmitter
attention mechanism is demonstrated in Fig. 11. We first
absorb the sequential output of the three Bi-LSTM network
at the lower level, and calculate the soft align attention
matrix [36] between each two of them. The calculation of
the attention matrix can be expressed as

EMm™ = 0r0,, form,n=1,23 )
where O,, € Ri=*" and O,, € RI»*" represent the sequential
output of the m™ and n'™ base Bi-LSTM, respectively. ()7
indicates the transpose operation. Moreover, I,,, [, indicates
the length of the signal sequence from transmitter m and n. In
addition, h denotes the number of hidden neurons of the Bi-
LSTM. Then, this matrix is used to find the weighted output
sequence, given by

lm exp (e ( ’rnn)

Z Zk exp (e

— Y i (10a)

m(n) mn) n’

0O’ (10b)

where OJ, is the j row of the sequential output O,,, € Rlm*"
ej?™ indicates the i" row, j™ column entry for attention matrix
E(mn) The sequence Oy, is generated by concatenating O,
attention-based O,,, and the data augmentation mechanism.
Based on the n™ attention, the m™ output of the base Bi-
LSTM is defined as

Finally, the output of each lower level base network is

01 = [01(2) 0:1(3)}

02 [02(2) )

(1)

m

2(3) (12)

O3 = [03(2) 02/3(3)}

D. ResNet

We move upward to analyze the upper-level network, in
which a residual neural network (ResNet) [38] plays the main
role, which is essentially an artificial neural network (ANN)
that utilizes skipped connections among layers and is able to
learn the residual pattern between the prediction and the true
values in the current network. Naturally, the deeper the net-
work is, the more accurate model it can achieve. However, the
gradient vanishing problem, which refers to the optimization
gradients disappearing in the layers close to the input layers, is
a common problem for deep neural networks. To address this
problem, ResNet is a recently proposed method. In Fig. 8§,
ResNet in the upper-level network uses short-cuts between
layers, which can, at least, form an identical mapping after the
training and diminish the impact gradient vanishing problem.

Regarding H (x) as the underlying target mapping, which is
usually fitted by a non-residual network, the residual function
is F(z) = H(x) — z. The weights in the residual blocks are
trained to learn F'(z), which means they are trained to fill up
the difference between the existed patterns and true underlying



patterns, instead of being trained to extract deeper patterns
with direct linear transformations. By fitting F'(x) instead
of H(x), adding residual blocks can at least not worsen the
performance of the network. Adopting the residual learning,
the building blocks can be formally defined as

Zig1 = Wi a, zigo = Wigr - 00(2i41), Gig2 = 0r(Zig2 + @)

(13)
where o, is the activation function ReLLU, which ensures that
the activated neurons are strictly positive and only residual can
be learned, and is defined as

or(z) = max(0, x) (14)

E. Design of the Upper-Level Network

The design of the upper level in our network is specially
tailored for the indoor localization problem. Five blocks of
ResNet are implemented for residual learning and improve-
ment of accuracy with double layer skip each, while there is
no additional skip weights added within the shortcuts.

In Fig. 8, the output of the lower level in network is a
combination of neurons output by intra-attention mechanism
based on three Bi-LSTM. Assume that X () denotes the rays
and features from Tx #i, and O}(X(1); X(2); X(3)) ¢ R8*h
indicates the attention-based output from the Base Bi-LSTM
network #:i. The output of the whole lower level network is
presented by

OQ(X(”;X(Q);X(?’))
Oé(x(l);X(Z);X(ii))
Og(X(l);X(Q);X(?’))

15)

Olow =

Then we can derive the expression of the upper level network
as. By invoking the function ResNet(-) that refers to a
residual block for residual learning, and incorporating the
function Dense(-) that denotes a fully-connected layer used
to transform the hidden neurons to the 3D coordinates, the
output of the upper level network and equivalently, the final
location estimate, 0, € R3, is given by

Oup = on(Dense* - ResNet® (0jow)) (16)
FE. Loss function, Optimization Algorithm and Model Integra-
tion

For the problem of indoor localization, our objective is to
minimize the distance error between the prediction and true
values, so we select the Mean Square Error (MSE) as the loss
function in our network, which is described as

MSE = lzn:”yi—y}H%’ a7
i
where n indicates the number of samples, y; and y; refer to
the target and estimated values, and || - |2 denotes l3-norm
operation.

The optimizer used in our architecture is Adaptive Mo-
ment Estimation (Adam) [39], which can be regarded as a
combination of Root Mean Square Propagation (RMSprop)
and Stochastic Gradient Descent (SGD) with momentum [39].
It is the most popular algorithm recently because of its

excellent ability of convergence for the increasing network
depth nowadays and its remarkable efficiency comparing with
normal SGD methods. The complete set of definition is

) = Bn® 1 (1- YVIO, (18
oD = Bou® + (1 — 1) (VLD)? (18b)
with
A mytt N vt
TTISET) TS ET g
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where € is a small scalar to prevent division by zero, [y
and [y are the forgetting factors for first order gradients and
the second moments. As we are performing an end-to-end
optimization on the whole model, w represents any trainable
weights in the lower-level and upper-level network. Note that
the squaring and the square rooting operation here are element-
wise. The algorithm of the adaptive moment estimation is
stated in [1].

Furthermore, in order to achieve a better accuracy, two
common techniques are used, i.e., k-fold cross validation
and mean bagging. On one hand, the k-fold cross validation
separates the training set into 10 slices. For each training
process, one non-repetitive slice is reserved for the model
evaluation, while the others are used for training. In this
case, 10 training processes are conducted and generate 10
different models, from which the best model will be chosen.
This technique aims to reduce the estimation bias and prevent
over-fitting of the network. On the other hand, by averaging
the output of multiple models, the mean bagging contributes
to diminish the variance of the localization estimation, which
is experimentally found the main obstacle of the proposed
method. In order to combine these two techniques time-
efficiently, instead of choosing only the best model, we choose
the best n = 5 models from all models. These models are
integrated using mean bagging, given by

0 1 —1
0 70516)t+01(1&)t+”'+0§1net)
net — n )

wtt —w® —p

(20)
where osfgt means the output of the model with i" least MSE
error in the validation.

G. Tree-structured Parzen Estimator Approach

Tree-structured Parzen Estimator (TPE) is a hyper-
parameter optimizer [40], which optimizes those pre-training
customized parameters and achieves the best performance
within limited computational resources. Due to the high com-
putation/time cost of one training process, hyper-parameter
optimization tasks are required to generate the best parameters
with the least number of training. Following the requirement,
TPE is a novel method, of which the runtime is confined
linearly by the size of observation set and the dimension of
the optimizing hyper parameters space. In our framework, the
SIABR neural network has many hyper-parameters, including
the number of the output nodes for the base BILSTM network
and the number of the ResNet blocks for the residual learning.



In addition, all the learning methods, established for compar-
ison purpose in Section VI, also apply the TPE method for
hyper-parameter optimization.

Assume f to be a function modeled with Gaussian process,
which takes the high dimensional hyper-parameters as input
and the object function result (the mean square error in our
validation) as an output. a represents the hyper-parameters in
the model and b represents the performance of the model. b*
is the threshold value in observation set H, which is usually
chosen as a quantile value, as p(b < b*) = ~. However,
no specific evaluation for p(b) is required in TPE approach.
Similar to the Gaussian optimization approach, TPE uses the
Expected Improvement (EI) algorithm to capture a balance
between the regions where the mean function is close to or
better than b and taking risk searching in the highly uncertain
regions.

y
Ely.(a) = / (b — b)p(bla)dy

— 00

" (alb)p(b) o
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In the TPE method, p(a|b) is defined as
l(a) ifb<b*

= 22
paly) {g(a) e @

where [(a) denotes the estimated density formed with the
observations {a(?} satisfying f(a'?) < b*, and g(a) is the
density formed by using the remaining observations. On each
iteration, the algorithm returns the hyper-parameter group a*
with maximum value of FETl(u). Note that, Flp-(a)
(v+ %(1 —~))~%, which is not necessary to be specifically
calculated. The optimization logic is formed as the pseudo
code in [1].

VI. PERFORMANCE EVALUATION AND ANALYSIS

In this section, the performance of the proposed SIABR
method is extensively evaluated in the two different indoor
environment described in Section IV-A, in contrast with both
existing approaches and variations of the LSTM technique.
The metrics of interest for comparison cover from conver-
gence, localization accuracy, robustness to obstacles in NLoS
environment, effect of limited training data, effect of reduced
number of multi-path rays, effect of temporal blockage and
effect of estimation errors. For the performance evaluation
in the rest of the section, without explicit explanation, the
dimensions of the training data sets are 4000 x 120 x 5 for
environment 1 and 2800 x 120 x 5 for environment 2, i.e.,
4000/2800 receiver locations, 120 multi-path arrival rays for
each receiver with zero-padding introduced in Section IV-B,
and 5 distinct features associated with individual arrival ray
including elevation AoA, azimuth AoA, delay, received power,
and index of the anchor transmitter. The experiment setting is
listed in Tab. II. Instead of using MSE (17) for convenience
of weights’ update, the major performance metric of the
experiments is the mean distance error (MDE), which is more

TABLE II: Software and hardware setting for the experiments.

GPU 1 NVIDIA GEFORCE RTX 2080 Ti
CPU 9th Generation Intel Core i7 Processors
Memory size 64G
(N CentOS 8
Python version Python 3.7

Wireless Insite
Tensorflow 1.15
CUDA 10.2 and cuDNN 7.6

Environment simulation
Deep learning framework
CUDA/cuDNN version
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Figure 12: The convergence evaluation of the SIABR model.

realistic and defined as

1 n
MDE = — :— 1
néJw Yill2

(23)

where y; is the true location of a reference point and y;
indicates the estimated location.

Eight different localization techniques from the literature
and intermediate products are selected for performance com-
parison with our proposed SIABR method, listed as trian-
gulation, K-nearest neighbor (KNN) [41], auto-encoder [42],
convolutional neural network (CNN), LSTM [35] with none
of structuring, ResNet and bidirectional strategies, structured
LSTM without bidirectionality, singular SBi-LSTM without
model integration, and SBi-LSTM [1].

A. Convergence Evaluation of SIABR

Convergence and its speed are critical evaluation metrics
for machine learning algorithms. The convergence of the
proposed SIABR method in the training phase is demonstrated
in Fig. 12. During the training phase of the network, eval-
uation sets are used to prevent over-fitting. In both indoor
environments, the mean square error of the loss for the training
data and evaluation data are plotted respectively. The loss
follows an exponential decay in the log scale. The convergence
proceeds with the number of epochs, where each epoch refers
to one iteration of the training cycle. After 20 epochs, the
loss reduces by at least two orders of magnitude, and hence,
fast convergence of our proposed SIABR method is verified
in both indoor environments.
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Figure 14: The heat map for localization errors in both environments
by using the proposed SIABR network.

B. Localization Accuracy

The localization accuracy is evaluated based on the estima-
tion error of the 3D distance. Fig. 13 shows the histogram and
the fitted Rayleigh Distribution for distance errors, which is
estimated by the proposed SIABR method. In environment 1,
the mean distance error is 0.2431m and the standard deviation
is 0.1703m. By contrast, the mean and standard deviation of
the distance error are, respectively, 0.2312m and 0.1481m in
environment 2. The proposed method achieves the localization
accuracy under 0.25m within both environments, implying
that the SIABR network is well applicable for localization
in a simple, symmetrical hall as well as in a decorative
room. The 3D heat map for the distance errors of location
estimation in the two environments are shown in Fig. 14.
The max distance error 1.7m in environment 1 and 1.3m in
environment 2. Very few points separated in different corners
have extremely large distance error. The proposed method
has full coverage over both environments. According to our
observation, while environment 1 is larger than environment
2, the two environments have negligible difference in terms of
the mean distance error for localization accuracy. Therefore,
the size of the indoor space mildly influences the performance
of the model.

Next, eight different localization methods from the literature
are compared with our proposed SIABR. For fair comparison,
these methods are invoked to process the same ray tracing
data under the two indoor environments. Table III summarizes
the mean distance errors and standard deviations of different
methods, while Fig. 15 shows the cumulative density function
of the location estimation results of the methods. The proposed
SIABR model has the best performance under the two indoor
environments, in terms of the distance errors. From the state
of art CNN deep learning method [9], SIABR improved
about 70% of location estimation accuracy. The localization

TABLE III: The mean distance errors and its standard deviations for

two environments. Unit in meter.

Model Structure

‘ Env. 1 (mean, std.) ‘ Env. 2 (mean, std.)

SIABR (0.2431, 0.1703) (0.2312, 0.1481)
SBi-LSTM (0.2695, 0.1671) (0.2480, 0.1645)
Singular SBi-LSTM (0.4754, 0.2432) (0.3814, 0.2091)
Triangulation (5.5178, 2.9556) (2.5524, 0.9315)
Auto-encoder (3.3709, 2.6286) (1.0420, 1.1024)
LSTM (0.8465, 0.4749) (0.5748, 0.3110)
Structured LSTM (0.6851, 0.3880) (0.5190, 0.3300)
KNN (1.9620, 1.8169) (1.1281, 1.1750)

CNN (0.6350, 0.3620) (0.5252, 0.3187)
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Figure 15: The CDF curve for distance errors in both environments
with respect to different methods.

accuracy improvement of our network mainly contributes from
the combination of residual learning in the upper level, the
attention mechanism in the lower level and bidirectionality
applied on the LSTM, as well as the model integration. By
applying structuring and ResNet in the network, the accuracy
of the structured LSTM improves about 15% from the classic
LSTM. Furthermore, the accuracy of the Singular SBi-LSTM
improves about 32% from the structured LSTM, by using
bidirectionality and residual learning. Implementing model
integration technique, the localization accuracy of SBi-LSTM
method improves about 40% from its singular form. Finally,
novel intra-attention mechanism introduced in this paper im-
proves about 7% from our previous work by treating the input
sequences with adaptive weights.

C. Robustness to Static Blockage

In real environments, varieties of blockages may have
effect on the accuracy of indoor localization, including static
blockage and dynamic blockage. In this section, the evaluation
focuses on the static blockage, which should be captured by
the STABR during the offline training phase, such as pillars in
environment 1 and furniture in environment 2. By observing
distributions of mean distance error over different k.5 values,
We conduct the evaluation of the robustness to static blockage
and study how the multi-path effect caused by static obstacles
and complicated polyhedral surfaces influences the accuracy
of indoor localization.

We introduce a LoS factor kj,s in Section IV-A to distin-
guish different receiver points with different number of LoS
rays due to the varying relative positions to blockages. In both
environments, for the four groups of receivers with kr,s equal
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using STABR method.

TABLE IV: The mean distance errors and their standard deviations
with different k7,5 values. Unit in meter.

LoS factor | Env. I (mean, std.) | Env. 2 (mean, std.)

kros =0 | (0.2260, 0.1248) (0.2971, 0.1735)
kros =1 | (0.2395, 0.1309) (0.2603, 0.2045)
kros =2 | (0.1981, 0.08827) (0.2628, 0.1280)
kros =3 | (0.2929, 0.1885) (0.2126, 0.1315)

to 0, 1, 2, 3, we carry out their localization errors, described as
the mean and standard deviation of corresponding probability
density distribution in Table I'V. Fig. 16 describes the distance
error distributions with respect to different ky,g values, in
order to evaluate how the NLoS property impacts the accuracy
of the location estimation.

In environment 1, there is no clear trend of change for
the localization precision as kr,g increases, i.e., more LoS
signals from the transmitters for the receiver. This suggests
that as a result of the simplicity and symmetrical property of
the indoor structure in environment 1, the performance of our
network is not impacted by the number of LoS rays with a
specific trend. By contrast in environment 2, because of the
complexity of the indoor structure, our STABR performs worse
in prediction accuracy when kr,s decreases. We learn that
the mean error of localization distance increases to 0.2971m
as kr.s reduces from 3 to 0 with an addition of 0.0845m.
By comparison, the increments are 2.42m for triangulation,
0.716m for auto-encoder, 1.021m for KNN, 0.35m for LSTM,
0.33m for Structured LSTM 0.1063m for SBiLSTM and
0.23m for CNN, respectively. It indicates that our SIABR
ensures strong robustness of the localization while considering
the effect of NLoS phenomena.

D. Effect of the Dynamic Blockage

Before applying the proposed method in the real-world
environments, one of the main obstacles that could signif-
icantly influence the final performance is the existence of
dynamic blockage. In the practical indoor scenarios, moving
human bodies or other objects can result in such dynamic
blockages on some of the THz rays from the transmitters
with a large blocking probability. This kind of blockage is
able to introduce more severe attenuation, even fully-shield, on
THz signals than on normal WiFi signals. Since the traditional
triangulation method strongly depends on the accurate RSSI
input, significant signal attenuation caused by the dynamic
blockage may have a much worse influence on the accuracy of
the indoor localization with this method. Moreover, according

TABLE V: The mean distance errors with different ray blockage
strategies in both environments. Unit in meter.

Blocked Rays | SIABR/SBiLSTM Env. 1 | SIABR/SBIiLSTM Env. 2

original ‘ 0.2431/0.2695 ‘ 0.2312/0.2480
Rand. chosen 1 0.2451/0.2711 0.2343/0.2502
Rand. chosen 2 0.2646/0.2779 0.2398/0.2538
Rand. chosen 3 0.2759/0.2802 0.2450/0.2577
Rand. chosen 4 0.2794/0.2834 0.2582/0.2612
Rand. chosen 5 0.2830/0.2924 0.2602/0.2678
Top 1 0.3568/0.3423 0.3653/0.3019
Top 2 0.3150/0.4982 0.3425/0.4910
Top 3 0.5230/0.5458 1.2468/0.8169
Top 4 0.8420/0.7160 0.8614/1.0989
Top 5 1.2523/0.9153 0.9348/1.1783

to [2], common fingerprinting methods are vulnerable to the
slight environment change like dynamic blockage.

As a result, we investigate the impact of the dynamic
blockage on our proposed model. To mimic the dynamic
blockage in the simulated environments, several rays of each
sample are blocked based on the following two strategies,
respectively. In the first situation, we randomly block n ray(s)
from all three transmitters, corresponding to the first half of
Table V, which is mimicking the people walking around the
open area in the room. In the second situation, we randomly
select one transmitter and block its first n ray(s) with the
largest power, i.e., the top n power in the top power in
Table V. This strategy reproduces the channel information in
the room, when dynamic blockage is right in front of one
certain transmitter.

Different from the static LoS blockage that is mentioned
in Section IV, the dynamic blockage explored in this section
is unpredictable and varies over time. In general, the LoS
blockage is naturally embedded in the indoor environments
and supposed to be captured by the proposed model during the
training phase. However, the dynamic blockage is not captured
during the offline training phase and unpredictable for the
model. Therefore, it is a significant test on the robustness
performance of the proposed model to introduce dynamic
blockage experiments.

In addition, the difference between this subsection and
Section VI-F is clarified here. During the experiments, both
sections are trying to evaluate the performance of the proposed
model by masking some rays, however, there are disparities
between the logic behind them. In Section VI-F, rays are
masked due to the large distinctions between the power of
THz rays, while in this section rays are masked due to the
temporal moving objects in the indoor environment.

From Table. V, it is observed that the proposed model is
more sensitive towards the first strategy, intuitively implying
that the localization accuracy of the SIABR strongly depends
on the top-power rays from the transmitters. Though, drop of
model performance during online testing phase is caused by
dynamic blockage, the mean distance errors of both SIABR
and SBILSTM stay in a reasonable range in most cases.
Nevertheless, to prevent top power of a transmitter rays
being blocked in practical application, the positioning of the
transmitter is critical. Locating transmitters at a open area with
less probability of being blocked by moving objects could
improve the online localization accuracy and reduce the risk of
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Figure 17: Examination of the impact of limited dataset on accuracy.
Here the performance indicator (y-axis) is the mean distance errors
of the localization estimation on the test set.

malfunction for the proposed model. Furthermore, comparing
with the SBiLSTM [1], there is no evidence that the robustness
against temporal blockage of the STABR model is worse.

E. Effect of Limited Training Data

For a real-life indoor localization problem, one main ob-
stacle that the deep learning methods need to face is the
limitation of the dataset. The exhaustive computation required
to construct a 2800/4000 fingerprinting training set of the
paper is idealized. In order to evaluate the proposed model
under realistic scenarios, we test the network with different
reduced sizes of the training set, i.e., different numbers of
reference receiver points, in Fig. 17. The dataset size ranges
from 100% to 10% of the original size, which causes the mean
distance error to vary from 0.25m to 1.7m for environment 1
and 0.23m to Im for environment 2. The results show that
the proposed model is robust to the reduction of dataset size,
which demonstrates feasibility in the realistic localization sce-
nario with the limited dataset. Our proposed method, provided
with limited number (i.e., less than 1000) of reference receiver
points, still maintains effective for indoor localization.

The mean distance errors of the proposed model are within
1.85m in environment 1 and 1.10m in environment 2 for
all sizes of dataset. Assigning proper hyper-parameters, the
proposed network do not lose its ability to converge even
with only 200 reference receiver points. The performance
of the SIABR network improves steadily with the increase
of the number of reference receiver points. Moreover, with
the increasing of data in the the training set, there is no
drastic drop and rise, implying that the model does not have
sudden turn-on requirement of receiver numbers for these two
environments. Therefore, we believe there is solid ground for
us to conclude that the performance of our network is robust
with limited dataset.

F. Effect of THz Channel Sparsity

Compared to the electromagnetic waves at the UWB and
mmWave band, THz signals, used for the indoor localization,
experience molecular absorption loss and reflection loss in
addition to much higher spreading loss. Thus, there may be
obvious distinctions between rays’ power level of different
paths absorbed by a receiver. In this case, only several rays
with the strongest power for the receiver play major roles in
predicting the location. Moreover, in real application, not all
rays simulated by the ray tracing method can be detected,
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TABLE VI: The mean distance errors with different reduced numbers
of THz multi-path rays. Unit in meter.

Number of Reduced Rays | Env. 1 | Env.2

0 Lowest 0.2695 | 0.2480
10 Lowest 0.2933 | 0.2650
20 Lowest 0.2256 | 0.2545

which makes it interesting to investigate the effect of ray
reduction for channel sparsity on THz localization. We delete
10/20 rays with lowest power among each transmitter-receiver
pair before the zero-padding processing, aiming to simulate
the impact of the ray reduction on the training data. These
peculiarities of the THz channel are exploited in the pro-
posed algorithms. The intra-attention mechanism, upper-level
residual learning and mean-bagging technique are specially
designed to solve the above problem, i.e. to minimize the
impact caused by the channel sparsity effect.

The relation between the number of deleted rays and the
accuracy of the model in both environments is demonstrated in
Table VI. From test results, we learn that there are fluctuations
on mean distance errors by deleting 10, or even 20 rays with
lowest power. However, the mean distance errors still stay
within 0.3m for both environments. The experimental results
suggest that this model depends strongly on the first dozens
of rays that each receiver receives to determine its location.
Essentially, this phenomenon assures that the proposed method
only acquires advantage from the high resolution in the THz
band with ultra-broad bandwidth, while maintaining robust to
the channel sparsity and the reduced number of multi-path.

G. Robustness to Estimation Error

Based on the ray-tracing techniques, our proposed model
is trained and tested with idealized inputs from the simulated
environments. Before applying the proposed method to practi-
cal applications, another part of the main obstacles that could
significantly affect the final performances is the estimation
error of the CSI features. In the real-world scenarios, the
error mainly comes from the aforementioned inaccurate CSI
estimation due to the thermal noise as well as the slight
environmental changes, such as the shake of the mobile
devices. Thanks to the ultra high bandwidth and frequency
of THz signal, THz signals suffer less interference from
background electromagnetic wave than UWB and mmWave
band. However, the state-of-art highly accurate CSI estimation
achieves up to 3.457% average difference ratio (ADR) [43]
and still has a long way to go. Thus, it is necessary for us to
provide robust indoor localization performance with noises in
the simulated input.

Here, we apply zero-mean Gaussian distribution based
random noise to the input based on the state-of-art CSI
estimation [43], including power, time of arrival and angle
of arrival. In Table VII, we evaluate the mean distance errors
of our model based on different variance of Gaussian noise
in both environments. The first three columns correspond
to the variance of AoA, ToA and power. Moreover, we
can observe that the estimation mean distance error of the
proposed model apparently rises with increasing variance of
the noise. However, all mean distance errors maintain within



TABLE VII: The mean distance errors with different ratio of Gaussian
noise in both environments. Units in degree (AoA), second (ToA),
dB (Power), and meter (mean distance errors).

AoA | ToA | Power | SIABIR Env. I | SIABIR Env. 2

0 0 0 0.2431 0.2312
0.1 le-9 0.1 0.2785 0.2444
0.2 2e-9 0.2 0.3011 0.2980
0.4 4e-9 0.4 0.3255 0.2745
0.8 8e-9 0.8 0.3356 0.3025
1.6 16e-9 1.6 0.4125 0.3508

a reasonable range, e.g., 0.5m. The performance drop reacts
insensitively to reasonable amount noise. No malfunction of
the proposed model is shown in the experiments. Therefore,
the results suggest that the proposed SIABR model is not
vulnerable towards the slight noises on the inputs and is robust
to the inevitable errors during the THz CSI estimation. When
the error of the estimated AoA, ToA and power are less than
0.1 degree, 1e-9, 0.1 dB, the localization accuracy variation is
less than 5 cm.

H. Time Complexity Analysis

Besides the accuracy of the model, another key feature
of an indoor localization method, is the time complexity in
both training and testing phases. In the training phase, single
SIABR model needs approximately 2 hours to converge in
both environments, according to the experimental setting in
Tab. II. When utilizing the mean-bagging technique in five
SIABR models to improve accuracy, it takes approximately
10 hours to complete training. By contrast, a single CNN
model [9] used for this localization problem consumes about
30 minutes for training, which corresponds to 2.5 hours to
train 5 CNN models with mean begging. Furthermore, the
SBiLSTM model in our preliminary work [1] consumes about
one hour to train, and takes around 5 hours by applying mean
bagging techniques on 5 SBiLSTM models.

In the testing phase, our proposed model takes less than
150 ms to generate a batch of 500 receivers’ location with
three sequences of input information from the transmitters,
without any network pruning or compression. For comparison,
the CNN model [9] and the SBiLSTM model [1] consume
around 130 ms to generate the output location. Therefore, the
SIABR improved accuracy comes at the cost of four times
longer training complexity, and 15% increased testing time,
which is acceptable in practical applications, since the rise in
testing time is still in the same order of magnitude.

VII. CONCLUSION

In this paper, we have proposed a novel SIABR deep
learning method for 3D THz indoor localization. The unprece-
dented high-resolution THz CSI, including 3D AoA, received
power, and delay, are extracted and exploited. The two-level
architecture is designed based on the SIABR method, in
which the lower level extracts the THz NLoS ray features
with the intra-attention mechanism, while the upper level
integrates five blocks of ResNet to generate the 3D location of
targeted receivers. Extensive simulation results have validated
the accuracy, convergence and robustness against indoor NLoS
environment. The mean distance error is within 0.25m, which

is competitive compared to the state-of-the-art techniques,
by considering the 3D indoor propagation with multi-path
fading and dynamic blockage effects. Future work includes
the adoption of THz real-world measurement data instead of
simulation data, to evaluate the proposed SIABR deep learning
method for THz indoor localization.
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